Original entry on oeis.org
1, 1, 3, 21, 269, 5501, 164871, 6826353, 373877161, 26202082729, 2288805048251, 243958190401341, 31176599353144853, 4706999020319020101, 829102910675624591839, 168548158717259440652601, 39174415082612704149839761, 10324151597447856368055425553, 3062691062053211798175516784691
Offset: 0
-
A269938 := proc(n) local T; T := proc(n, k) option remember;
if n=k then 1 elif k<0 or k>n then 0 else T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k) fi end: add(T(n, k), k=0..n) end: seq(A269938(n), n=0..18);
A269946
Triangle read by rows, Lah numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^3+k^3)*T(n-1, k), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 18, 18, 1, 0, 504, 648, 72, 1, 0, 32760, 47160, 7200, 200, 1, 0, 4127760, 6305040, 1141560, 45000, 450, 1, 0, 895723920, 1416456720, 283704120, 13741560, 198450, 882, 1, 0, 308129028480, 498072032640, 106386981120, 5876519040, 106616160, 691488, 1568, 1
Offset: 0
Triangle starts:
[1]
[0, 1]
[0, 2, 1]
[0, 18, 18, 1]
[0, 504, 648, 72, 1]
[0, 32760, 47160, 7200, 200, 1]
[0, 4127760, 6305040, 1141560, 45000, 450, 1]
-
T := proc(n, k) option remember;
`if`(n=k, 1,
`if`(k<0 or k>n, 0,
T(n-1, k-1) + ((n-1)^3+k^3) * T(n-1, k) )) end:
for n from 0 to 6 do seq(T(n,k), k=0..n) od;
-
T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^3 + k^3)*T[n-1, k]; T[, ] = 0;
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
Showing 1-2 of 2 results.