This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268435 #17 Jul 12 2019 15:35:59 %S A268435 1,0,1,0,2,1,0,12,6,1,0,120,84,12,1,0,1680,1800,300,20,1,0,30240, %T A268435 52080,10800,780,30,1,0,665280,1905120,505680,42000,1680,42,1,0, %U A268435 17297280,84490560,29211840,2857680,126000,3192,56,1 %N A268435 Triangle read by rows, T(n,k) = RF(n-k+1,n-k)*S2(n,k) where RF denotes the rising factorial and S2 the Stirling set numbers, for n>=0 and 0<=k<=n. %H A268435 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/P-Transform">The P-transform</a>. %F A268435 T(n,k) = binomial(n,k)*Sum_{i=0..k} binomial(k,i)*A268437(n-k,i). %F A268435 T(n,k) = binomial(-k,-n)*Sum_{i=0..n-k} binomial(-n,i)*A268438(n-k,i). %F A268435 T(n,k) = 4^(n-k)*Gamma(n-k+1/2)*A048993(n,k)/sqrt(Pi). %F A268435 T(n,1) = (2*n-2)!/(n-1)! for n>=1. %F A268435 T(n,n-1) = (n-1)*n for n>=1. %F A268435 Recurrence: T(n,k) = 1 if k=n; 0 if k=0; otherwise k*(4*(n-k)-2)*T(n-1,k)+T(n-1,k-1). %e A268435 [1] %e A268435 [0, 1] %e A268435 [0, 2, 1] %e A268435 [0, 12, 6, 1] %e A268435 [0, 120, 84, 12, 1] %e A268435 [0, 1680, 1800, 300, 20, 1] %e A268435 [0, 30240, 52080, 10800, 780, 30, 1] %e A268435 [0, 665280, 1905120, 505680, 42000, 1680, 42, 1] %p A268435 T := (n, k) -> pochhammer(n-k+1,n-k)*Stirling2(n,k): %p A268435 for n from 0 to 9 do seq(T(n,k), k=0..n) od; %p A268435 # Alternatively: %p A268435 T := proc(n,k) option remember; %p A268435 `if`( n=k, 1, %p A268435 `if`( k=0, 0, %p A268435 k*(4*(n-k)-2)*T(n-1,k)+T(n-1,k-1))) end: %p A268435 for n from 0 to 7 do seq(T(n,k),k=0..n) od; %t A268435 T[n_, k_] := Pochhammer[n-k+1, n-k] StirlingS2[n, k]; %t A268435 Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 12 2019 *) %o A268435 (Sage) %o A268435 A268435 = lambda n,k: rising_factorial(n-k+1,n-k)*stirling_number2(n,k) %o A268435 [[A268435(n,k) for k in (0..n)] for n in range(8)] %Y A268435 Cf. A048993, A268436, A268437, A268438. %K A268435 nonn,tabl %O A268435 0,5 %A A268435 _Peter Luschny_, Mar 07 2016