cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A268440 Triangle read by rows, T(n,k) = C(2*n,n+k)*Sum_{m=0..k} (-1)^(m+k)*C(n+k,n+m)* Stirling1(n+m,m), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 8, 3, 0, 90, 120, 15, 0, 1344, 3640, 1680, 105, 0, 25200, 110880, 107100, 25200, 945, 0, 570240, 3617460, 5815040, 2910600, 415800, 10395, 0, 15135120, 128576448, 303963660, 256736480, 78828750, 7567560, 135135
Offset: 0

Views

Author

Peter Luschny, Mar 08 2016

Keywords

Examples

			[1]
[0, 1]
[0, 8, 3]
[0, 90, 120, 15]
[0, 1344, 3640, 1680, 105]
[0, 25200, 110880, 107100, 25200, 945]
[0, 570240, 3617460, 5815040, 2910600, 415800, 10395]
		

Crossrefs

Programs

  • Maple
    # The function PTrans is defined in A269941.
    A268440_row := n -> PTrans(n, n->n/(n+1), (n,k) -> (-1)^k*(2*n)!/(k!*(n-k)!)):
    seq(print(A268440_row(n)), n=0..8);
  • Sage
    A268440 = lambda n, k: binomial(2*n,n+k)*sum((-1)^(m+k)*binomial(n+k,n+m)* stirling_number1(n+m, m) for m in (0..k))
    for n in (0..7): print([A268440(n, m) for m in (0..n)])
    
  • Sage
    # uses[PtransMatrix from A269941]
    # Alternatively
    PtransMatrix(7, lambda n: n/(n+1), lambda n,k: (-1)^k*factorial(2*n)/ (factorial(k)*factorial(n-k)))

Formula

T(n,k) = ((-1)^k*(2*n)!/(k!*(n-k)!))*P[n,k](n/(n+1)) where P is the P-transform. The P-transform is defined in the link.
T(n,k) = A269940*binomial(2*n,n+k).
T(n,k) = A268438(n,k)/(k!*(n-k)!).
T(n,1) = n*(2*n)!/(n+1)! for n>=1 (cf. A092956).
T(n,n) = (2*n-1)!! = A001147(n) for n>=0.
Showing 1-1 of 1 results.