cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268441 Triangle read by rows, the coefficients of the Bell polynomials.

This page as a plain text file.
%I A268441 #33 May 27 2020 20:17:19
%S A268441 1,0,1,0,1,1,0,1,3,1,0,1,3,4,6,1,0,1,10,5,15,10,10,1,0,1,10,15,6,15,
%T A268441 60,15,45,20,15,1,0,1,35,21,7,105,70,105,21,105,210,35,105,35,21,1,0,
%U A268441 1,35,56,28,8,280,210,280,168,28,105,840,280,420,56,420,560,70,210,56,28,1
%N A268441 Triangle read by rows, the coefficients of the Bell polynomials.
%C A268441 The triangle of coefficients of the inverse Bell polynomials is A268442.
%D A268441 L. Comtet, Advanced combinatorics, The art of finite and infinite expansions, 1974.
%H A268441 Peter Luschny, <a href="/A268441/b268441.txt">First 26 rows, flattened</a>
%H A268441 E. T. Bell, <a href="https://www.jstor.org/stable/1967979">Partition polynomials</a>, Ann. Math., 29 (1927-1928), 38-46.
%H A268441 E. T. Bell, <a href="https://www.jstor.org/stable/1968431">Exponential polynomials</a>, Ann. Math., 35 (1934), 258-277.
%H A268441 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/BellTransform">The Bell transform</a>
%F A268441 E.g.f.: exp( Sum_{k>=1} x_{k}*t^k/k! ), monomials in negative lexicographic order.
%e A268441 [[1]]
%e A268441 [[0], [1]]
%e A268441 [[0], [1],  [1]]
%e A268441 [[0], [1],  [3],         [1]]
%e A268441 [[0], [1],  [3, 4],      [6],          [1]]
%e A268441 [[0], [1],  [10, 5],     [15, 10],     [10],     [1]]
%e A268441 [[0], [1],  [10, 15, 6], [15, 60, 15], [45, 20], [15], [1]]
%e A268441 Replacing the sublists by their sums reduces the triangle to the triangle of the Stirling numbers of second kind (A048993).
%t A268441 BellCoeffs[n_, k_] :=  Module[{v, r},
%t A268441 v = Table[Subscript[x,j], {j,1,n}]; (* list of variables *)
%t A268441 r = Table[Subscript[x,j]->1, {j,1,n}]; (* evaluated at 1 *)
%t A268441 MonomialList[BellY[n,k,v], v, NegativeLexicographic] /. r];
%t A268441 A268441Row[n_] := Table[BellCoeffs[n,k], {k,0,n}] // Flatten;
%t A268441 Do[Print[A268441Row[n]], {n,0,8}] (* _Peter Luschny_, Feb 08 2016 *)
%t A268441 max = 9; egf = Exp[Sum[x[k]*t^k/k!, {k, 1, max}]]; P = Table[n!* SeriesCoefficient[egf, {t, 0, n}], {n, 0, max-1}]; row[n_] := (s = Split[ Sort[{ Exponent[# /. x[_] -> x, x], #}& /@ (List @@ Expand[P[[n]]])], #1[[1]] == #2[[1]]&]; Join[{0}, #[[All, 2]]& /@ (s /. x[_] -> 1) // Flatten]); row[1] = {1}; Array[row, max] // Flatten (* _Jean-François Alcover_, Feb 08 2016 *)
%o A268441 (Sage)
%o A268441 import itertools
%o A268441 def A268441_row(n):
%o A268441     c = [bell_polynomial(n,k).coefficients() for k in (0..n)]
%o A268441     if n>0: c[0] = [0]
%o A268441     return list(itertools.chain(*c))
%o A268441 for n in range(9): print(A268441_row(n))
%Y A268441 Cf. A048993, A268442.
%K A268441 nonn,tabf
%O A268441 0,9
%A A268441 _Peter Luschny_, Feb 07 2016