cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A268451 Number of length-n 0..2 arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.

Original entry on oeis.org

3, 9, 25, 67, 176, 456, 1169, 2971, 7496, 18796, 46880, 116386, 287775, 709005, 1741247, 4264131, 10415559, 25381773, 61721980, 149801330, 362926749, 877831299, 2120050410, 5112962906, 12314976142, 29625637490, 71188510125
Offset: 1

Views

Author

R. H. Hardin, Feb 04 2016

Keywords

Examples

			Some solutions for n=9:
..1....0....0....2....2....1....0....2....1....1....2....0....1....0....1....0
..2....0....1....2....2....1....0....2....0....1....0....0....1....2....0....2
..0....2....2....1....2....2....2....1....2....2....2....1....1....2....1....0
..2....1....2....2....2....0....0....0....2....2....2....1....1....2....1....1
..2....1....2....0....2....0....2....1....1....0....2....1....1....2....2....2
..0....1....0....0....0....2....0....1....0....1....2....2....1....2....2....0
..1....0....0....0....0....0....0....1....0....2....0....2....0....1....0....2
..2....1....1....2....0....0....2....2....0....0....0....2....0....0....0....0
..2....2....1....2....0....2....1....0....2....1....1....2....2....0....1....0
		

Crossrefs

Column 2 of A268457.

Formula

Empirical: a(n) = 6*a(n-1) - 13*a(n-2) + 14*a(n-3) - 10*a(n-4) + 4*a(n-5) - a(n-6).
Empirical g.f.: x*(3 - 9*x + 10*x^2 - 8*x^3 + 3*x^4 - x^5) / (1 - 3*x + 2*x^2 - x^3)^2. - Colin Barker, Jan 13 2019

A268452 Number of length-n 0..3 arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.

Original entry on oeis.org

4, 16, 61, 229, 852, 3146, 11536, 42032, 152254, 548568, 1966757, 7019311, 24946486, 88313632, 311507619, 1095064315, 3837407016, 13407618832, 46715533678, 162345449332, 562801287366, 1946559269050, 6717910370343, 23136984979001
Offset: 1

Views

Author

R. H. Hardin, Feb 04 2016

Keywords

Comments

Column 3 of A268457.

Examples

			Some solutions for n=9
..0....1....0....1....1....0....3....3....3....2....1....1....2....1....0....2
..1....2....2....0....1....1....0....2....0....2....0....0....0....2....0....2
..2....3....2....2....0....3....3....3....3....3....0....3....0....2....0....2
..3....0....0....2....2....0....0....3....3....0....2....3....1....0....2....2
..1....2....1....3....0....0....1....1....1....0....0....3....2....0....0....3
..3....3....3....3....0....2....3....3....1....1....1....1....2....3....0....1
..1....3....0....0....2....1....1....1....0....3....1....3....2....0....1....2
..2....0....0....2....0....1....1....1....0....3....3....1....3....0....2....0
..0....3....2....2....0....2....2....3....0....0....0....0....0....3....3....1
		

Crossrefs

Cf. A268457.

Formula

Empirical: a(n) = 19*a(n-1) -156*a(n-2) +730*a(n-3) -2178*a(n-4) +4446*a(n-5) -6613*a(n-6) +7587*a(n-7) -6948*a(n-8) +5152*a(n-9) -3101*a(n-10) +1503*a(n-11) -573*a(n-12) +163*a(n-13) -31*a(n-14) +3*a(n-15)

A268453 Number of length-n 0..4 arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.

Original entry on oeis.org

5, 25, 121, 581, 2776, 13204, 62535, 294967, 1385969, 6488635, 30273074, 140779986, 652648100, 3016745162, 13905372533, 63924885355, 293126854872, 1340883359460, 6119617278729, 27867658231717, 126637380509476, 574312506857594
Offset: 1

Views

Author

R. H. Hardin, Feb 04 2016

Keywords

Comments

Column 4 of A268457.

Examples

			Some solutions for n=7
..4....4....4....0....2....2....1....0....1....3....3....2....2....4....1....2
..0....0....0....3....3....0....4....4....1....3....1....1....4....3....0....1
..1....3....1....2....3....0....4....1....4....1....2....0....4....3....0....1
..4....0....1....2....3....0....2....2....4....4....2....4....2....3....0....3
..2....1....1....2....4....4....1....2....0....2....4....3....4....3....2....1
..2....3....2....1....4....4....4....2....0....1....2....2....0....0....2....3
..2....2....4....2....0....1....3....0....0....0....4....3....0....4....0....0
		

Crossrefs

Cf. A268457.

Formula

Empirical: a(n) = 39*a(n-1) -693*a(n-2) +7441*a(n-3) -54053*a(n-4) +282341*a(n-5) -1103223*a(n-6) +3324255*a(n-7) -7938129*a(n-8) +15426103*a(n-9) -25019179*a(n-10) +34622055*a(n-11) -41606078*a(n-12) +43991906*a(n-13) -41304450*a(n-14) +34649044*a(n-15) -26064185*a(n-16) +17607461*a(n-17) -10675286*a(n-18) +5792770*a(n-19) -2798790*a(n-20) +1194342*a(n-21) -444872*a(n-22) +142204*a(n-23) -38049*a(n-24) +8201*a(n-25) -1336*a(n-26) +146*a(n-27) -8*a(n-28)

A268454 Number of length-n 0..5 arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.

Original entry on oeis.org

6, 36, 211, 1231, 7160, 41526, 240170, 1385338, 7970326, 45742764, 261899866, 1496074920, 8527336280, 48500972230, 275294704851, 1559507239653, 8817578095886, 49763675574292, 280352403988287, 1576707102660739
Offset: 1

Views

Author

R. H. Hardin, Feb 04 2016

Keywords

Comments

Column 5 of A268457.

Examples

			Some solutions for n=6
..4....1....1....0....5....2....5....4....1....4....5....3....0....4....5....0
..0....5....0....0....5....1....5....2....4....5....2....3....2....2....4....4
..3....2....0....0....5....5....4....2....0....3....4....5....3....3....0....5
..5....3....5....2....0....5....2....4....0....2....3....0....5....0....5....1
..0....4....4....3....1....1....5....4....4....1....2....4....2....2....1....1
..4....0....5....4....1....1....0....1....4....1....4....2....1....4....0....3
		

Crossrefs

Cf. A268457.

Formula

Empirical recurrence of order 51 (see link above)

A268455 Number of length-n 0..6 arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.

Original entry on oeis.org

7, 49, 337, 2311, 15816, 108032, 736525, 5012171, 34047931, 230889543, 1563104184, 10564826628, 71293105297, 480355314513, 3231663192859, 21709801573961, 145636117720769, 975623832619371, 6526972402359763, 43608650962250889
Offset: 1

Views

Author

R. H. Hardin, Feb 04 2016

Keywords

Comments

Column 6 of A268457.

Examples

			Some solutions for n=6
..4....4....2....2....4....1....0....4....5....1....2....4....2....0....3....1
..4....3....6....4....1....0....0....2....4....0....4....3....3....4....6....1
..4....0....6....5....3....6....3....1....0....6....2....1....3....3....2....2
..0....4....4....6....0....5....5....0....4....6....3....3....4....2....4....0
..6....4....4....4....2....2....3....4....1....6....0....5....5....1....3....5
..3....5....1....4....2....0....5....3....0....5....6....1....1....2....1....2
		

Crossrefs

Cf. A268457.

Formula

Empirical recurrence of order 89 (see link above)

A268456 Number of length-n 0..7 arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.

Original entry on oeis.org

8, 64, 505, 3977, 31276, 245626, 1926444, 15089356, 118040270, 922247248, 7196716310, 56092274904, 436681564144, 3395712755366, 26376195676360, 204653424502050, 1586213921445534, 12281469122143732, 94993604706706795
Offset: 1

Views

Author

R. H. Hardin, Feb 04 2016

Keywords

Comments

Column 7 of A268457.

Examples

			Some solutions for n=5
..7....2....3....3....6....4....5....4....1....0....6....7....6....4....2....4
..6....5....2....6....5....4....1....1....6....2....1....4....5....1....4....1
..4....4....1....4....0....5....3....0....4....4....7....5....0....3....7....7
..5....4....1....5....1....0....4....7....3....2....2....3....7....4....3....0
..2....0....1....1....6....6....0....6....6....1....6....6....7....4....2....4
		

Crossrefs

Cf. A268457.

A268458 Number of length-4 0..n arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.

Original entry on oeis.org

11, 67, 229, 581, 1231, 2311, 3977, 6409, 9811, 14411, 20461, 28237, 38039, 50191, 65041, 82961, 104347, 129619, 159221, 193621, 233311, 278807, 330649, 389401, 455651, 530011, 613117, 705629, 808231, 921631, 1046561, 1183777, 1334059
Offset: 1

Views

Author

R. H. Hardin, Feb 04 2016

Keywords

Examples

			Some solutions for n=9:
  2  7  0  3  8  5  3  3  4  5  8  9  9  8  2  4
  7  1  3  8  4  1  1  0  8  6  2  5  1  9  2  5
  6  0  7  3  1  1  0  5  8  2  0  8  1  4  0  2
  2  3  1  4  5  0  9  4  9  2  9  4  8  6  2  9
		

Crossrefs

Row 4 of A268457.

Programs

  • Maple
    seq(n^4 + 4*n^3 + 4*n^2 + n + 1, n=1..100); # Robert Israel, Nov 28 2019

Formula

Empirical: a(n) = n^4 + 4*n^3 + 4*n^2 + n + 1.
Empirical g.f.: x*(11 + 12*x + 4*x^2 - 4*x^3 + x^4) / (1 - x)^5. - Colin Barker, Jan 13 2019
Proof of empirical formula: There are (n+1)^4 arrays without the constraint. n of them are of the form (x,x+1,x+1,x) with 0 <= x <= n-1, n*(n+1) are of the form (x,x+1,x,y) with 0 <= x<= n-1 and 0<=y<=n, and n*(n+1) are of the form (y,x,x+1,x). That leaves n^4 + 4*n^3 + 4*n^2 + n + 1. - Robert Israel, Nov 28 2019

A268459 Number of length-5 0..n arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.

Original entry on oeis.org

16, 176, 852, 2776, 7160, 15816, 31276, 56912, 97056, 157120, 243716, 364776, 529672, 749336, 1036380, 1405216, 1872176, 2455632, 3176116, 4056440, 5121816, 6399976, 7921292, 9718896, 11828800, 14290016, 17144676, 20438152, 24219176
Offset: 1

Views

Author

R. H. Hardin, Feb 04 2016

Keywords

Examples

			Some solutions for n=9:
  7  5  8  9  3  4  1  2  0  4  3  1  5  1  5  3
  1  4  0  0  3  4  6  4  1  4  6  5  9  8  7  0
  3  1  2  5  2  7  1  2  3  7  4  6  7  6  6  3
  6  1  7  6  1  6  7  1  6  5  4  8  6  6  5  9
  1  1  9  6  5  3  5  8  3  6  4  9  4  6  5  7
		

Crossrefs

Row 5 of A268457.

Formula

Empirical: a(n) = n^5 + 5*n^4 + 7*n^3 + n^2 + 2*n.
Conjectures from Colin Barker, Jan 13 2019: (Start)
G.f.: 4*x*(4 + 20*x + 9*x^2 - 4*x^3 + x^4) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A268460 Number of length-6 0..n arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.

Original entry on oeis.org

22, 456, 3146, 13204, 41526, 108032, 245626, 504876, 959414, 1712056, 2901642, 4710596, 7373206, 11184624, 16510586, 23797852, 33585366, 46516136, 63349834, 84976116, 112428662, 146899936, 189756666, 242556044, 307062646, 385266072
Offset: 1

Views

Author

R. H. Hardin, Feb 04 2016

Keywords

Examples

			Some solutions for n=6:
  2  0  2  3  6  4  4  4  3  2  3  6  0  3  1  2
  5  2  6  2  3  2  2  2  2  4  1  0  5  2  5  6
  2  4  4  6  4  4  5  1  2  4  1  4  4  2  0  0
  0  0  0  4  6  1  4  2  4  2  3  0  5  0  3  0
  0  4  3  4  1  0  2  4  4  3  6  5  5  0  5  1
  6  2  0  5  0  1  2  5  6  4  5  6  1  2  2  2
		

Crossrefs

Row 6 of A268457.

Formula

Empirical: a(n) = n^6 + 6*n^5 + 11*n^4 + 2*n^3 + 6*n - 4.
Conjectures from Colin Barker, Jan 13 2019: (Start)
G.f.: 2*x*(11 + 151*x + 208*x^2 - 6*x^3 - 13*x^4 + 11*x^5 - 2*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A268461 Number of length-7 0..n arrays with no adjacent pair x,x+1 followed at any distance by x+1,x.

Original entry on oeis.org

29, 1169, 11536, 62535, 240170, 736525, 1926444, 4474451, 9476950, 18644745, 34530920, 60809119, 102607266, 166901765, 262977220, 402956715, 602407694, 881028481, 1263420480, 1779951095, 2467712410, 3371580669, 4545381596
Offset: 1

Views

Author

R. H. Hardin, Feb 04 2016

Keywords

Examples

			Some solutions for n=4:
..3....2....2....3....3....3....4....2....0....0....3....4....4....4....4....4
..4....3....2....1....3....0....4....2....3....4....0....0....0....3....2....1
..2....0....0....1....0....4....4....4....1....3....2....2....2....4....2....3
..0....3....2....3....3....1....4....2....3....0....3....2....4....2....1....3
..1....4....2....2....2....0....0....1....3....2....1....4....1....2....3....0
..3....0....4....1....1....2....2....4....1....0....0....0....3....3....0....2
..4....0....3....2....2....4....3....0....1....3....0....1....4....3....0....0
		

Crossrefs

Row 7 of A268457.

Formula

Empirical: a(n) = n^7 + 7*n^6 + 16*n^5 + 5*n^4 - 7*n^3 + 18*n^2 - 5*n - 5 for n>1.
Conjectures from Colin Barker, Jan 14 2019: (Start)
G.f.: x*(29 + 937*x + 2996*x^2 + 1355*x^3 - 536*x^4 + 335*x^5 - 88*x^6 + 13*x^7 - x^8) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>9.
(End)
Showing 1-10 of 11 results. Next