This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268462 #13 Sep 08 2022 08:46:15 %S A268462 0,0,0,0,10,56,224,768,2400,7040,19712,53248,139776,358400,901120, %T A268462 2228224,5431296,13074432,31129600,73400320,171573248,397934592, %U A268462 916455424,2097152000,4771020800,10796138496,24310185984,54492397568,121634816000,270448721920,599147937792 %N A268462 Expansion of (2 x^4*(5 - 12*x + 8*x^2))/(1 - 2*x)^4. %C A268462 a(n) is the number of North-East lattice paths from (0,0) to (n,n) in which total number of east steps below y = x-1 or above y = x+1 is exactly three. Details can be found in Section 4.1 in Pan and Remmel's link. %H A268462 Colin Barker, <a href="/A268462/b268462.txt">Table of n, a(n) for n = 0..1000</a> %H A268462 Ran Pan, Jeffrey B. Remmel, <a href="http://arxiv.org/abs/1601.07988">Paired patterns in lattice paths</a>, arXiv:1601.07988 [math.CO], 2016. %H A268462 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-24,32,-16). %F A268462 G.f.: (2 x^4*(5 - 12*x + 8*x^2))/(1 - 2*x)^4. %F A268462 a(n) = 8*a(n-1)-24*a(n-2)+32*a(n-3)-16*a(n-4) for n>3. - _Vincenzo Librandi_, Feb 05 2016 %F A268462 a(n) = 2^(n-4)*(n-3)*(n+1)*(n+2)/3 for n>2. - _Colin Barker_, Feb 08 2016 %t A268462 CoefficientList[Series[(2 x^4 (5 - 12 x + 8 x^2)) / (1 - 2 x)^4, {x, 0, 33}], x] (* _Vincenzo Librandi_, Feb 05 2016 *) %t A268462 LinearRecurrence[{8,-24,32,-16},{0,0,0,0,10,56,224},40] (* _Harvey P. Dale_, Feb 10 2022 *) %o A268462 (Magma) I:=[0,0,0,0,10,56,224]; [n le 7 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..40]]; // _Vincenzo Librandi_, Feb 05 2016 %o A268462 (PARI) concat(vector(4), Vec(2*x^4*(5-12*x+8*x^2)/(1-2*x)^4 + O(x^100))) \\ _Colin Barker_, Feb 08 2016 %K A268462 nonn,easy %O A268462 0,5 %A A268462 _Ran Pan_, Feb 04 2016