This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268478 #33 Sep 08 2022 08:46:15 %S A268478 3,4,11,29,78,14,103,324,70,204,497,519,1477,1420,1881,902,1476,3600, %T A268478 3418,2202,5257,317,914,5074,4269,9192,5666,6421,7086,4182,12193,3800, %U A268478 1097,11677,299,22651,17271,12063,18371,26297,13784,10137,8405,33583,11230 %N A268478 L(p) modulo p^2, where p = prime(n) and L is a Lucas number (A000032). %C A268478 Lemma 7 from the Andrejic paper (p. 42): Prime p is a Wall-Sun-Sun prime iff L(p) == 1 (mod p^2). Therefore, a(n) = 1 iff A113650(n) = 0. %H A268478 Felix Fröhlich, <a href="/A268478/b268478.txt">Table of n, a(n) for n = 1..10000</a> %H A268478 V. Andrejic, <a href="http://dx.doi.org/10.2298/PETF0617038A">On Fibonacci powers</a>, Publikacije Elektrotehnickog fakulteta - serija: matematika, 17 (2006), 38-44. %F A268478 a(n) = A180363(n) mod A001248(n). - _Michel Marcus_, Feb 09 2016 %t A268478 Table[Mod[LucasL[Prime[n]], Prime[n]^2], {n, 60}] (* _Vincenzo Librandi_, Feb 09 2016 *) %o A268478 (PARI) a000032(n) = fibonacci(n+1) + fibonacci(n-1) %o A268478 a(n) = my(p=prime(n)); lift(Mod(a000032(p), p^2)) %o A268478 (Magma) [Lucas(p) mod p^2: p in PrimesUpTo(250)]; // _Bruno Berselli_, Feb 09 2016 %Y A268478 Cf. A000032, A000040, A113650, A180363. %K A268478 nonn %O A268478 1,1 %A A268478 _Felix Fröhlich_, Feb 05 2016