A268480 Integers k such that A002110(k) is the average of two consecutive primes.
2, 3, 5, 8, 38, 40, 64, 73, 89, 236, 480, 486
Offset: 1
Examples
5 is a term because 2*3*5*7*11 = 2310 = (2309 + 2311)/2. 8 is a term because 2*3*5*7*11*13*17*19 = 9699690 = (9699667 + 9699713)/2.
Programs
-
Maple
P:= 2: count:= 0: for n from 2 to 500 do P:= P*ithprime(n); # first try d=1 if isprime(P+1) then good:= isprime(P-1); elif isprime(P-1) then good:= false else for d from ithprime(n+1) by 2 do if igcd(d,P) > 1 then next fi; if isprime(P+d) then good:= isprime(P-d); break elif isprime(P-d) then good:= false; break fi od; fi; if good then count:= count+1; A[count]:= n; fi od: seq(A[i],i=1..count); # Robert Israel, Aug 29 2016
-
Mathematica
prim[n_] := Times @@ Prime[Range[n]]; Select[Range[2, 100], Total[NextPrime[(p = prim[#]), {-1, 1}]] == 2*p &] (* Amiram Eldar, May 19 2024 *)
-
PARI
a002110(n) = prod(k=1, n, prime(k)); for(n=2, 1e3, if((nextprime(a002110(n)) - a002110(n)) == (a002110(n) - precprime(a002110(n))), print1(n, ", ")))
Comments