This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268483 #21 Feb 11 2017 02:29:39 %S A268483 13,43,53,139,151,193,199,223,229,239,317,397,4751,4889,4909,4937, %T A268483 4951,4967,5011,5023,5077,5087,5113,5297,5351,5419,6007,6053,6211, %U A268483 6247,6301,6317,6343,6857,9209,9421,9473,9491,10937,11047,11329,11399,11423,11443,11491 %N A268483 Primes p such that the numbers of primes not exceeding p in A268476 and A268477 are equal. %C A268483 In contrast to the analogous sequence for odious and evil primes (A027697, A027699), which, as we conjecture, consists of only primes 3,7,29 (see also our 2007-conjecture in A027697, A027699), here we conjecture that the sequence is infinite. %H A268483 Peter J. C. Moses, <a href="/A268483/b268483.txt">Table of n, a(n) for n = 1..2000</a> %H A268483 Vladimir Shevelev, <a href="http://arxiv.org/abs/1603.04434">Two analogs of Thue-Morse sequence</a>, arXiv:1603.04434 [math.NT], 2016. %t A268483 lim = 1500; s = Select[Prime@ Range@ lim, EvenQ@ Length[Split@ IntegerDigits[#, 2] /. {0, ___} -> Nothing] &]; t = Select[Prime@ Range@ lim, OddQ@ Length[Split@ IntegerDigits[#, 2] /. {0, ___} -> Nothing] &] ; Select[Prime@ Range@ lim, Count[s, p_ /; p <= #] == Count[t, q_ /; q <= #] &] (* _Michael De Vlieger_, Feb 08 2016 *) %Y A268483 Cf. A027697, A027699, A130911, A268476, A268477. %K A268483 nonn,base %O A268483 1,1 %A A268483 _Vladimir Shevelev_, Feb 05 2016 %E A268483 More terms from _Peter J. C. Moses_, Feb 05 2016