This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268509 #29 Mar 21 2016 21:22:46 %S A268509 2,3,5,13,15,17,32,35,37,40,43,46,52,56,63,65,99,101,109,136,143,145, %T A268509 152,158,175,190,195,197,243,255,257,312,317,323,325,331,336,351,356, %U A268509 366,377,399,401,422,483,485,560,568,575,577,584,592,654,675,677,717,741,783,785,799,810,891,899,901,909,937,944,978 %N A268509 Numbers x such that x^3 = y^2 + z for some y and some nonzero z with -x < z < x. %C A268509 List of x such as x^3 is a near square (see examples). %C A268509 Note that z = 17 appears often (see A029728). %H A268509 Daniel Mondot, <a href="/A268509/b268509.txt">Table of n, a(n) for n = 1..10000</a> %e A268509 2^3 = 3^2 - 1; %e A268509 3^3 = 5^2 + 2; %e A268509 5^3 = 11^2 + 4; %e A268509 13^3 = 47^2 - 12; %e A268509 15^3 = 58^2 + 11; %e A268509 17^3 = 70^2 + 13; %e A268509 32^3 = 181^2 + 7; %e A268509 35^3 = 207^2 + 26; %e A268509 37^3 = 225^2 + 28; %e A268509 40^3 = 253^2 - 9; %e A268509 43^3 = 282^2 - 17; %e A268509 46^3 = 312^2 - 8; %e A268509 52^3 = 375^2 - 17; %e A268509 56^3 = 419^2 + 55; %e A268509 63^3 = 500^2 + 47; %e A268509 65^3 = 524^2 + 49; %e A268509 99^3 = 985^2 + 74. %o A268509 (C) %o A268509 #include <stdio.h> %o A268509 #include <stdlib.h> %o A268509 #include <math.h> %o A268509 #define MAX2 10000 %o A268509 /* list number x and y such that x^3 = y^2 ± delta (0 < delta < x) */ %o A268509 /* this generates A268509 and A268510 */ %o A268509 long long unsigned b,c,d; %o A268509 long long signed ds; %o A268509 unsigned long long list2[MAX2]; %o A268509 unsigned long long list3[MAX2]; %o A268509 long double b1, cd, dd; %o A268509 void main(unsigned argc, char *argv[]) %o A268509 { %o A268509 unsigned a, i; %o A268509 i=0; %o A268509 // I never actually calculate b^3 or c^2, but only b^(3/2) = c + ds %o A268509 // this allows me to indirectly check b^3 past 2^64 %o A268509 for (b=0; b<100000000; ++b) // could go up to b<4294967295u; max %o A268509 { %o A268509 b1 = sqrtl(b); %o A268509 cd= b1 *(long double)b; %o A268509 c=(long long unsigned)(cd+(double)0.5); %o A268509 dd = 2 * c * (cd - c); %o A268509 if (dd<0) ds = (dd - 0.5); %o A268509 else ds = (dd + 0.5); %o A268509 d = llabs(ds); %o A268509 if (d<b) // d = abs(b^3 - c^2) %o A268509 { %o A268509 if (ds) %o A268509 { %o A268509 if (i<MAX2) %o A268509 { %o A268509 list2[i]= b; %o A268509 list3[i++]= c; %o A268509 } %o A268509 } %o A268509 } %o A268509 } %o A268509 // generate A268509 */ %o A268509 for (a=0; a<i; ++a) printf("%u %llu\n", a+1, list2[a]); %o A268509 printf("\n\n"); %o A268509 // generate A268510 */ %o A268509 for (a=0; a<i; ++a) printf("%u %llu\n", a+1, list3[a]); %o A268509 printf("\n\n"); %o A268509 } %o A268509 (PARI) is(n)=my(t=abs(n^3-round(n^1.5)^2)); 0<t && t<n \\ _Charles R Greathouse IV_, Feb 09 2016 %Y A268509 Cf. A029728, A253181, A268510. %K A268509 nonn %O A268509 1,1 %A A268509 _Daniel Mondot_, Feb 06 2016