A268510 Numbers x such that x^2 = y^3 + z (0 < abs(z) < y).
3, 5, 11, 47, 58, 70, 181, 207, 225, 253, 282, 312, 375, 419, 500, 524, 985, 1015, 1138, 1586, 1710, 1746, 1874, 1986, 2315, 2619, 2723, 2765, 3788, 4072, 4120, 5511, 5644, 5805, 5859, 6022, 6159, 6576, 6717, 7002, 7320, 7970, 8030, 8669, 10615, 10681, 13252, 13537, 13788, 13860, 14113, 14404, 16725, 17537, 17615
Offset: 1
Keywords
Examples
3^2 = 2^3 + 1 5^2 = 3^3 - 2 11^2 = 5^3 - 4 47^2 = 13^3 + 12 58^2 = 15^3 - 11 70^2 = 17^3 - 13 181^2 = 32^3 - 7 207^2 = 35^3 - 26 225^2 = 37^3 - 28 253^2 = 40^3 + 9 282^2 = 43^3 + 17 312^2 = 46^3 + 8 375^2 = 52^3 + 17 419^2 = 56^3 - 55 500^2 = 63^3 - 47 524^2 = 65^3 - 49 985^2 = 99^3 - 74
Links
- Daniel Mondot, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range@ 5000, Resolve@ Exists[{y, z}, And[Reduce[#^2 == (y^3 + z), {y, z}, Integers], 0 < Abs@ z < y]] &] (* Michael De Vlieger, Feb 07 2016 *)
Comments