This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268511 #29 Oct 04 2021 13:13:39 %S A268511 1,5,13,17,29,89,109,149,157,193,373 %N A268511 Odd integers n such that 3^n + 5^n = x^2 + y^2 (x and y integers) is solvable. %C A268511 Corresponding 3^n + 5^n values are 8, 3368, 1222297448, 763068593288, 186264583553473068008, ... %C A268511 445 <= a(12) <= 509. 509, 661, 709 are terms. - _Chai Wah Wu_, Jul 22 2020 %e A268511 1 is a term because 3^1 + 5^1 = 8 = 2^2 + 2^2. %e A268511 5 is a term because 3^5 + 5^5 = 3368 = 2^2 + 58^2. %e A268511 13 is a term because 3^13 + 5^13 = 1222297448 = 4118^2 + 34718^2. %t A268511 Select[Range[1, 110, 2], Resolve@ Exists[{x, y}, Reduce[3^# + 5^# == (x^2 + y^2), {x, y}, Integers]] &] (* _Michael De Vlieger_, Feb 07 2016 *) %o A268511 (PARI) is(n) = #bnfisintnorm(bnfinit(z^2+1), n); %o A268511 for(n=1, 1e3, if(n%2==1 && is(3^n + 5^n), print1(n, ", "))); %o A268511 (Python) %o A268511 from sympy import factorint %o A268511 A268511_list = [] %o A268511 for n in range(1,50,2): %o A268511 m = factorint(3**n+5**n) %o A268511 for d in m: %o A268511 if d % 4 == 3 and m[d] % 2: %o A268511 break %o A268511 else: %o A268511 A268511_list.append(n) # _Chai Wah Wu_, Dec 26 2018 %Y A268511 Cf. A001481, A074606. %K A268511 nonn,more %O A268511 1,2 %A A268511 _Altug Alkan_, Feb 06 2016 %E A268511 a(8)-a(9) from _Giovanni Resta_, Apr 10 2016 %E A268511 a(10)-a(11) from _Chai Wah Wu_, Jul 22 2020