This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268513 #20 Sep 08 2022 08:46:15 %S A268513 2,3,5,7,11,13,17,19,23,29,31,37,43,47,49,53,59,61,65,67,71,73,79,82, %T A268513 83,87,91,97,101,103,107,113,121,122,123,131,137,139,143,149,151,155, %U A268513 157,159,161,167,178,179,181,185,187,191,193,197,199 %N A268513 Numbers n such that bigomega(n) = bigomega(n*(n+1)+41). %H A268513 Zak Seidov, <a href="/A268513/b268513.txt">Table of n, a(n) for n = 1..20000</a> %e A268513 Let eu(x) = x*(x + 1) + 41 and n-AP= n-almost prime, then: %e A268513 both 2 and eu(2)=47 are primes, %e A268513 both 49=7*7 and eu(49)=47*53 are semiprimes, %e A268513 both 574=2*7*41 and eu(574)=41*83*97 are 3-AP, %e A268513 both 3484=2^2*13*67 and eu(3484)=12141781=41*43*71*97 are 4-AP, %e A268513 both 54224=2^4*3389 and eu(2940296441)=43^2*61*131*199 are 5-AP, %e A268513 both 506022=2*3*11^2*17*41 and eu(506022)=41*43^2*71*113*421 are 6-AP, %e A268513 both 7375900=2^2*5^2*7*41*257 and eu(7375900)=41*47*53*71^2*251*421 are 7-AP, %e A268513 both 151072290=2*3^4*5*41*4549 and eu(151072290)=41*47*61*83*113^2*167*1097 are 8-AP. %t A268513 Select[Range[100], PrimeOmega[#] == PrimeOmega[# (# + 1) + 41] &] %o A268513 (PARI) isok(n) = bigomega(n) == bigomega(n^2+n+41); \\ _Michel Marcus_, Feb 07 2016 %o A268513 (Magma) [n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq &+[d[2]: d in Factorization(n^2+n+41)] ]; // _Vincenzo Librandi_, Feb 08 2016 %Y A268513 Cf. A001222, A202018. %K A268513 nonn %O A268513 1,1 %A A268513 _Zak Seidov_, Feb 06 2016