A268533 Pascal's difference pyramid read first by blocks and then by rows: T(n,k,m) = 1/(m!) * (d/dx)^m((1-x)^k*(1+x)^(n-k))|_{x=0}.
1, 1, 1, 1, -1, 1, 2, 1, 1, 0, -1, 1, -2, 1, 1, 3, 3, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -3, 3, -1, 1, 4, 6, 4, 1, 1, 2, 0, -2, -1, 1, 0, -2, 0, 1, 1, -2, 0, 2, -1, 1, -4, 6, -4, 1, 1, 5, 10, 10, 5, 1, 1, 3, 2, -2, -3, -1, 1, 1, -2, -2, 1, 1, 1, -1, -2, 2, 1, -1, 1, -3, 2, 2, -3, 1, 1, -5, 10, -10, 5, -1
Offset: 0
Keywords
Examples
First few blocks: 1 . 1, 1 . 1, -1 . . . . . 1, 2, 1 . . . . . 1, 0, -1 . . . . . 1, -2, 1 . . . . . . . . . . . 1, 3, 3, 1 Second triangle . . . 1, 1, -1, -1 slice, T_1: . . . . . 1, -1, -1, 1 0 . . . . . . . . . . 1, -3, 3, -1 1 -1 . . . . . . . . . . . . . . . . 1, 4, 6, 4, 1 2 0 -2 . . . . . . . . . . . . . . 1, 2, 0, -2, -1 3, 2, -2, -3 . . . . . . . . . . . . 1, 0, -2, 0, 1 4, 5, 0, -5, -4 . . . . . . . . . . 1, -2, 0, 2, -1 5, 9, 5, -5, -9, -5 . . . . . . . . 1, -4, 6, -4, 1 n=2 Cartesian/Polar coordinate change using quantum Pascal's pyramid: | 1 -2 i -1 | | y^2 - 1 | | - (r exp[ I \phi])^2 | | 1 0 1 | * | x*y | = | r^2 - 2 | | 1 2 i -1 | | x^2 - 1 | | - (r exp[-I \phi])^2 | When: x = r cos[\phi], y= r sin[\phi]. Permutation of Pauli Matrices, \sigma_i, using normalized quantum Pascal's pyramid: | 1 -i | R = (1/sqrt[2]) * | 1 i | Then, R * \sigma_j * R^{\dagger} = \sigma_{pi(j)}, where pi(j) is a cyclic permutation: { 1 -> 2, 2 -> 3, 3 -> 1 }.
References
- L. Allen, S. M. Barnett, and M. J. Padgett, Optical angular momentum, Institute of Physics Publishing, Bristol, 2003.
Links
- L. Allen et al., Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Physical Review A, 45 (1992), 8185-8190.
- William G. Harter, Principles of Symmetry, Dynamics, Spectroscopy, Wiley, 1993, Ch. 5, page 345-348.
- Brad Klee, Quantum Angular Momentum Matrices, Wolfram Demonstrations Project, 2016.
- Mohamed Sabba, A quantum Pascal pyramid and an extended de Moivre-Laplace theorem, arXiv:2404.03560 [quant-ph], 2024. See pp. 1-2.
Programs
-
Mathematica
PascalsPyramid[Block_] := Outer[Simplify[Function[{n, k, m},1/(m!)(D[(1 - x)^k*(1 + x)^(n - k), {x, m}] /. x -> 0)][Block, #1, #2]] &, Range[0, Block], Range[0, Block]]; PascalsPyramid /@ Range[0, 10]
Formula
T(n,k,m) = (1/(m!)) * (d/dx)^m((1-x)^k*(1+x)^(n-k))|_{x=0}.
Comments