A268538 a(n) is the n-th prime 3-dimensional Catalan number.
1, 1, 2, 12, 107, 1178, 14805, 203885, 3002973, 46573347, 752521980, 12571607865, 215925120675, 3796546970232, 68106673339365, 1243210765414512, 23041656826384341
Offset: 0
Keywords
Links
- Manuel Wettstein, Trapezoidal Diagrams, Upward Triangulations, and Prime Catalan Numbers, arXiv:1602.07235 [cs.CG], 2016.
Programs
-
Maple
A005789 := proc(n) 2*(3*n)!/(n+2)!/(n+1)!/n! ; end proc: maxn := 30 : Cx := add(A005789(i)*x^i,i=0..maxn) ; d := 3: for i from 0 to maxn do coeftayl(1/Cx^(d*i-1),x=0,i) ; %/(1-d*i) ; printf("%d,",%) ; end do: # R. J. Mathar, Feb 27 2018
-
Mathematica
A005789[n_] := 2*(3*n)!/(n+2)!/(n+1)!/n!; Maxn = 30; Cx = Sum[A005789[i]* x^i, {i, 0, Maxn}]; d = 3; Reap[For[i = 0, i <= Maxn, i++, sc = SeriesCoefficient[1/Cx^(d*i-1), {x, 0, i}]; Sow[sc/(1-d*i)]]][[2, 1]] (* Jean-François Alcover, Mar 24 2018, after R. J. Mathar *)
Formula
Lemma 15 of Wettstein (2016) gives a formula in terms of the 3-dimensional Catalan numbers (A005789).
Extensions
7 more terms from R. J. Mathar, Feb 27 2018
Comments