This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268550 #34 May 02 2022 01:56:27 %S A268550 1,12,366,13800,574650,25335072,1159174464,54435558672,2606102756730, %T A268550 126634810078920,6226427808402516,309095505195676992, %U A268550 15466884541698962736,779158533743408851200,39476348002042199114400,2010009672816216740255520 %N A268550 Diagonal of 1/(1 - x - y - z - x y - x z - y z). %C A268550 Annihilating differential operator: x*(x+2)*(x+1)*(27*x^2+54*x-1)*Dx^2 + (81*x^4+324*x^3+431*x^2+214*x-2)*Dx + 24*x^3+72*x^2+72*x+24. - _Gheorghe Coserea_, Jul 03 2016 %H A268550 Gheorghe Coserea, <a href="/A268550/b268550.txt">Table of n, a(n) for n = 0..310</a>, First 201 terms from Vaclav Kotesovec. %H A268550 A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, <a href="http://arxiv.org/abs/1507.03227">Diagonals of rational functions and selected differential Galois groups</a>, arXiv preprint arXiv:1507.03227 [math-ph], 2015. %H A268550 Steffen Eger, <a href="http://arxiv.org/abs/1511.00622">On the Number of Many-to-Many Alignments of N Sequences</a>, arXiv:1511.00622 [math.CO], 2015. %H A268550 Jacques-Arthur Weil, <a href="http://www.unilim.fr/pages_perso/jacques-arthur.weil/diagonals/">Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"</a> %F A268550 Conjecture: 2*n^2*(n-1)*a(n) -(n-1)*(107*n^2-107*n+24)*a(n-1) +12*(-9*n^3+27*n^2-22*n+2)*a(n-2) -3*n*(3*n-5)*(3*n-7)*a(n-3)=0. - _R. J. Mathar_, Mar 10 2016 %F A268550 a(n) ~ sqrt(3) * (27 + 6*sqrt(21))^n / (2*Pi*n). - _Vaclav Kotesovec_, Jul 01 2016 %F A268550 G.f.: hypergeom([1/12, 5/12], [1], 1728*x^3*(x+2)^3*(27*x^2+54*x-1)/(-1+48*x+24*x^2)^3)/(1-48*x-24*x^2)^(1/4). - _Gheorghe Coserea_, Jul 01 2016 %F A268550 0 = x*(x+2)*(x+1)*(27*x^2+54*x-1)*y'' + (81*x^4+324*x^3+431*x^2+214*x-2)*y' + (24*x^3+72*x^2+72*x+24)*y, where y is g.f. - _Gheorghe Coserea_, Jul 03 2016 %F A268550 a(n) = Sum_{i = 0..n} Sum_{k = 0..n-i} Sum_{j = 0..n-k} (n+i+j+k)!/(i!*j!*k!*(n-k-i)!*(n-k-j)!*(2*k+i+j-n)!). Apply [Eger, Theorem 3] to the set of column vectors S = {[1,0,0], [0,1,0], [0,0,1], [1,1,0], [1,0,1], [0,1,1]}. - _Peter Bala_, Apr 28 2022 %p A268550 A268550 := proc(n) %p A268550 1/(1-x-y-z-x*y-x*z-y*z) ; %p A268550 coeftayl(%,x=0,n) ; %p A268550 coeftayl(%,y=0,n) ; %p A268550 coeftayl(%,z=0,n) ; %p A268550 end proc: %p A268550 seq(A268550(n),n=0..20) ; # _R. J. Mathar_, Mar 10 2016 %t A268550 gf = Hypergeometric2F1[1/12, 5/12, 1, 1728*x^3*(x + 2)^3*(27*x^2 + 54*x - 1)/(-1 + 48*x + 24*x^2)^3]/(1 - 48*x - 24*x^2)^(1/4); %t A268550 CoefficientList[gf + O[x]^20, x] (* _Jean-François Alcover_, Dec 03 2017, after _Gheorghe Coserea_ *) %o A268550 (PARI) %o A268550 my(x='x, y='y, z='z); %o A268550 R = 1/(1 - x - y - z - x*y - x*z - y*z); %o A268550 diag(n, expr, var) = { %o A268550 my(a = vector(n)); %o A268550 for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n)); %o A268550 for (k = 1, n, a[k] = expr; %o A268550 for (i = 1, #var, a[k] = polcoeff(a[k], k-1))); %o A268550 return(a); %o A268550 }; %o A268550 diag(10, R, [x,y,z]) %o A268550 (PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi"); %o A268550 read("hypergeom.gpi"); %o A268550 N = 16; x = 'x + O('x^N); %o A268550 Vec(hypergeom([1/12, 5/12], [1], 1728*x^3*(x+2)^3*(27*x^2+54*x-1)/(-1+48*x+24*x^2)^3, N)/(1-48*x-24*x^2)^(1/4)) \\ _Gheorghe Coserea_, Jul 03 2016 %Y A268550 Cf. A268545-A268555. %K A268550 nonn,easy %O A268550 0,2 %A A268550 _N. J. A. Sloane_, Feb 29 2016