cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268618 a(n) = (2/n^3) * Sum_{d|n} moebius(n/d)*binomial(3*d,d).

This page as a plain text file.
%I A268618 #10 Oct 17 2018 09:00:04
%S A268618 6,3,6,15,48,171,678,2871,12858,60084,290814,1448679,7394106,38527779,
%T A268618 204365880,1101000087,6013054788,33239486925,185736687366,
%U A268618 1047961118940,5964676687668,34219227608607,197737647050742,1150211467134927,6731334034067058,39614408616493581,234342269725331130,1392933275876114127
%N A268618 a(n) = (2/n^3) * Sum_{d|n} moebius(n/d)*binomial(3*d,d).
%H A268618 G. C. Greubel, <a href="/A268618/b268618.txt">Table of n, a(n) for n = 1..1200</a>
%H A268618 R. R. Aidagulov, M. A. Alekseyev. On p-adic approximation of sums of binomial coefficients. Journal of Mathematical Sciences 233:5 (2018), 626-634. doi:<a href="http://doi.org/10.1007/s10958-018-3948-0">10.1007/s10958-018-3948-0</a> arXiv:<a href="http://arxiv.org/abs/1602.02632">1602.02632</a>
%F A268618 a(n) = (2/n^3)* Sum_{d|n} A008683(n/d)*A005809(d) = (2/n^2)*A060170(n) = (2/n)*A268617(n).
%t A268618 a[n_] := (2/n^3)* DivisorSum[n, MoebiusMu[n/#] Binomial[3 #, #] &]; Array[a, 50] (* _G. C. Greubel_, Dec 15 2017 *)
%o A268618 (PARI) { a(n) = sumdiv(n, d, moebius(n/d)*binomial(3*d, d))*2/n^3; }
%Y A268618 Cf. A268592, A254593
%K A268618 nonn
%O A268618 1,1
%A A268618 _Max Alekseyev_, Feb 09 2016