A268628 T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally or vertically adjacent neighbor totalling two no more than once.
3, 9, 9, 24, 42, 24, 60, 174, 174, 60, 144, 666, 1086, 666, 144, 336, 2430, 6300, 6300, 2430, 336, 768, 8586, 34890, 55452, 34890, 8586, 768, 1728, 29646, 187224, 467190, 467190, 187224, 29646, 1728, 3840, 100602, 982086, 3819654, 6000978, 3819654
Offset: 1
Examples
Some solutions for n=4 k=4 ..2..1..0..0. .1..2..1..0. .0..0..0..0. .1..2..2..2. .0..0..0..1 ..1..0..0..0. .0..1..0..0. .0..0..0..0. .2..1..2..2. .0..0..1..0 ..2..0..1..0. .1..0..0..0. .1..0..0..0. .1..2..2..2. .0..0..0..1 ..2..1..0..1. .0..0..1..1. .2..1..1..0. .0..2..2..2. .0..1..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..420
Crossrefs
Column 1 is A084858.
Formula
Empirical for column k:
k=1: a(n) = 4*a(n-1) -4*a(n-2)
k=2: a(n) = 6*a(n-1) -9*a(n-2) for n>3
k=3: a(n) = 10*a(n-1) -29*a(n-2) +20*a(n-3) -4*a(n-4)
k=4: [order 6] for n>7
k=5: [order 10]
k=6: [order 14] for n>15
k=7: [order 26]
Comments