This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268633 #8 Mar 21 2018 09:54:20 %S A268633 3,24,120,504,1944,7128,25272,87480,297432,997272,3306744,10865016, %T A268633 35429400,114791256,369882936,1186176312,3788111448,12053081880, %U A268633 38225488248,120875192568,381221761176,1199453833944,3765727153080 %N A268633 Number of n X 2 0..2 arrays with some element plus some horizontally or vertically adjacent neighbor totalling two exactly once. %C A268633 Column 2 of A268639. %H A268633 R. H. Hardin, <a href="/A268633/b268633.txt">Table of n, a(n) for n = 1..210</a> %F A268633 Empirical: a(n) = 6*a(n-1) - 9*a(n-2) for n>3. %F A268633 Conjectures from _Colin Barker_, Mar 21 2018: (Start) %F A268633 G.f.: 3*x*(1 + x)^2 / (1 - 3*x)^2. %F A268633 a(n) = 8*3^(n-2)*(2*n-1) for n>1. %F A268633 (End) %e A268633 Some solutions for n=8: %e A268633 ..0..1. .1..2. .2..1. .1..2. .2..2. .0..0. .0..0. .2..2. .1..2. .1..2 %e A268633 ..1..0. .2..1. .1..0. .2..2. .1..2. .0..0. .0..0. .2..1. .2..1. .2..1 %e A268633 ..2..1. .1..0. .2..1. .2..1. .2..1. .0..1. .0..0. .2..1. .2..2. .2..1 %e A268633 ..2..1. .0..0. .1..0. .0..0. .2..2. .1..2. .1..0. .1..2. .1..2. .2..2 %e A268633 ..2..2. .0..0. .2..2. .1..0. .2..2. .0..1. .0..1. .2..2. .0..0. .1..2 %e A268633 ..2..1. .0..0. .2..2. .0..1. .0..1. .0..0. .1..0. .2..2. .1..0. .2..1 %e A268633 ..1..0. .1..2. .2..2. .0..0. .0..0. .2..1. .2..2. .2..1. .0..0. .2..2 %e A268633 ..0..0. .0..1. .2..2. .0..0. .0..0. .2..2. .2..2. .1..2. .0..1. .2..2 %Y A268633 Cf. A268639. %K A268633 nonn %O A268633 1,1 %A A268633 _R. H. Hardin_, Feb 09 2016