A268634 Number of n X 3 0..2 arrays with some element plus some horizontally or vertically adjacent neighbor totalling two exactly once.
12, 120, 840, 5178, 29772, 163878, 875592, 4578186, 23548164, 119570574, 600870336, 2993807250, 14810051580, 72819229974, 356173467576, 1734202809114, 8410141924596, 40641730213278, 195782548631472, 940481337385122
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0..0..0. .1..0..0. .1..0..0. .2..1..0. .0..1..2. .1..0..1. .1..0..0 ..0..1..1. .0..1..0. .2..1..0. .1..0..0. .1..2..1. .0..1..0. .2..2..1 ..0..0..0. .1..2..1. .1..0..0. .2..1..0. .2..2..1. .1..0..0. .2..1..0 ..0..0..1. .2..2..2. .2..1..1. .2..0..0. .2..1..0. .2..1..0. .1..2..1 ..0..1..0. .2..1..2. .1..2..2. .1..0..1. .1..2..1. .0..0..0. .2..2..2 ..1..0..0. .0..0..1. .2..2..2. .2..1..0. .0..1..2. .0..0..0. .1..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A268639.
Formula
Empirical: a(n) = 10*a(n-1) - 29*a(n-2) + 20*a(n-3) - 4*a(n-4).
Empirical g.f.: 6*x*(2 - 2*x^2 + 3*x^3) / (1 - 5*x + 2*x^2)^2. - Colin Barker, Jan 14 2019