This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268687 #16 Jun 13 2022 12:37:12 %S A268687 0,1,2,3,11,31,191,1023 %N A268687 a(n) = MAX(g_k(n)) where g_k(n) is the function defined in A266202. %e A268687 g_1(4) = b_2(4)-1 = b_2(2^2)-1 = 3^2-1 = 8; %e A268687 g_2(4) = b_3(2*3+2)-1 = 2*4 + 2-1 = 9; %e A268687 g_3(4) = b_4(2*4 + 1 ) -1 = 2*5 + 1-1 = 10; %e A268687 g_4(4) = b_5(2*5) -1= 2*6 - 1 = 11; %e A268687 g_5(4) = b_6(6+5)-1 = 7+5-1 = 11; %e A268687 g_6(4) = b_7(7+4)-1 = 8+4-1 = 11; %e A268687 g_7(4) = b_8(8+3)-1 = 9+3-1 = 11; %e A268687 g_8(4) = b_9(9+2)-1 = 10+2-1 = 11; %e A268687 g_9(4) = b_10(10+1)-1 = 11+1-1 = 11; %e A268687 g_10(4) = b_11(11)-1 = 12-1 = 11; %e A268687 g_11(4) = b_12(11)-1 = 11-1 = 10; %e A268687 g_12(4) = b_13(10)-1 = 10-1 = 9; %e A268687 g_13(4) = b_14(9)-1 = 9-1 = 8; %e A268687 … %e A268687 g_21(4) = 0; %e A268687 So a(4)=11. %o A268687 (PARI) g(n, k) = {if (n == 0, return (k)); wn = k; for (k=2, n+1, pd = Pol(digits(wn, k)); wn = subst(pd, x, k+1) - 1; ); wn; } %o A268687 a(n) = {vg = []; ok = 1; ns = 0; while(ok, newg = g(ns, n); vg = concat(vg, newg); if (newg <= 0, ok = 0); ns++;); vmax = vecmax(vg); vmax;} \\ _Michel Marcus_, Apr 04 2016; corrected Jun 13 2022 %Y A268687 Cf. A266203, A268688, A268689. %K A268687 nonn,more %O A268687 0,3 %A A268687 _Natan Arie Consigli_, Apr 02 2016 %E A268687 a(6)-a(7) from _Michel Marcus_, Apr 04 2016