This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268714 #35 Apr 30 2021 12:38:53 %S A268714 0,1,1,3,2,3,2,4,4,2,7,3,6,3,7,6,8,5,5,8,6,4,7,10,4,10,7,4,5,5,9,9,9, %T A268714 9,5,5,15,6,7,8,14,8,7,6,15,14,16,8,6,13,13,6,8,16,14,12,15,18,7,11, %U A268714 12,11,7,18,15,12,13,13,17,17,12,10,10,12,17,17,13,13,8,14,15,16,22,11,8,11,22,16,15,14,8,9,9,16,14,21,21,9,9,21,21,14,16,9,9 %N A268714 Square array A(i,j) = A006068(i) + A006068(j), read by antidiagonals. %H A268714 Antti Karttunen, <a href="/A268714/b268714.txt">Table of n, a(n) for n = 0..15050; the first 173 antidiagonals of the array</a> %F A268714 A(i,j) = A006068(i) + A006068(j). %F A268714 A(i,j) = A006068(A268715(i,j)). - Corrected Mar 23 2017 %e A268714 The top left [0 .. 15] x [0 .. 15] section of the array: %e A268714 0, 1, 3, 2, 7, 6, 4, 5, 15, 14, 12, 13, 8, 9, 11, 10 %e A268714 1, 2, 4, 3, 8, 7, 5, 6, 16, 15, 13, 14, 9, 10, 12, 11 %e A268714 3, 4, 6, 5, 10, 9, 7, 8, 18, 17, 15, 16, 11, 12, 14, 13 %e A268714 2, 3, 5, 4, 9, 8, 6, 7, 17, 16, 14, 15, 10, 11, 13, 12 %e A268714 7, 8, 10, 9, 14, 13, 11, 12, 22, 21, 19, 20, 15, 16, 18, 17 %e A268714 6, 7, 9, 8, 13, 12, 10, 11, 21, 20, 18, 19, 14, 15, 17, 16 %e A268714 4, 5, 7, 6, 11, 10, 8, 9, 19, 18, 16, 17, 12, 13, 15, 14 %e A268714 5, 6, 8, 7, 12, 11, 9, 10, 20, 19, 17, 18, 13, 14, 16, 15 %e A268714 15, 16, 18, 17, 22, 21, 19, 20, 30, 29, 27, 28, 23, 24, 26, 25 %e A268714 14, 15, 17, 16, 21, 20, 18, 19, 29, 28, 26, 27, 22, 23, 25, 24 %e A268714 12, 13, 15, 14, 19, 18, 16, 17, 27, 26, 24, 25, 20, 21, 23, 22 %e A268714 13, 14, 16, 15, 20, 19, 17, 18, 28, 27, 25, 26, 21, 22, 24, 23 %e A268714 8, 9, 11, 10, 15, 14, 12, 13, 23, 22, 20, 21, 16, 17, 19, 18 %e A268714 9, 10, 12, 11, 16, 15, 13, 14, 24, 23, 21, 22, 17, 18, 20, 19 %e A268714 11, 12, 14, 13, 18, 17, 15, 16, 26, 25, 23, 24, 19, 20, 22, 21 %e A268714 10, 11, 13, 12, 17, 16, 14, 15, 25, 24, 22, 23, 18, 19, 21, 20 %t A268714 A006068[n_] := BitXor @@ Table[Floor[n/2^m], {m, 0, Log[2, n]}]; A006068[0] = 0; A[i_, j_] := A006068[i] + A006068[j]; Table[A[i-j, j], {i, 0, 13}, {j, 0, i}] // Flatten (* _Jean-François Alcover_, Feb 17 2016 *) %o A268714 (Scheme) %o A268714 (define (A268714 n) (A268714bi (A002262 n) (A025581 n))) %o A268714 (define (A268714bi row col) (+ (A006068 row) (A006068 col))) %o A268714 (PARI) %o A268714 \\ Produces the triangle when the array is read by antidiagonals %o A268714 a(n) = if(n<2, n, 2*a(floor(n/2)) + (n%2 + a(floor(n/2))%2)%2); /* A006068 */ %o A268714 T(i,j) = a(i) + a(j); %o A268714 for(i=0, 13, for(j=0, i, print1(T(i - j, j),", "););print();); \\ _Indranil Ghosh_, Mar 23 2017 %o A268714 (Python) %o A268714 # Produces the triangle when the array is read by antidiagonals %o A268714 def A006068(n): %o A268714 return n if n<2 else 2*A006068(n//2) + (n%2 + A006068(n//2)%2)%2 %o A268714 def T(i,j): return A006068(i) + A006068(j) %o A268714 for i in range(14): %o A268714 print([T(i - j, j) for j in range(i + 1)]) # _Indranil Ghosh_, Mar 23 2017 %Y A268714 Cf. A003188, A268715. %Y A268714 Cf. A006068 (row 0, column 0). %Y A268714 Cf. A066194 (row 1, column 1). %Y A268714 Cf. A268716 (main diagonal). %Y A268714 Cf. also A268724. %K A268714 nonn,tabl %O A268714 0,4 %A A268714 _Antti Karttunen_, Feb 12 2016