cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268715 Square array A(i,j) = A003188(A006068(i) + A006068(j)), read by antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...

This page as a plain text file.
%I A268715 #24 Mar 22 2021 03:42:38
%S A268715 0,1,1,2,3,2,3,6,6,3,4,2,5,2,4,5,12,7,7,12,5,6,4,15,6,15,4,6,7,7,13,
%T A268715 13,13,13,7,7,8,5,4,12,9,12,4,5,8,9,24,12,5,11,11,5,12,24,9,10,8,27,4,
%U A268715 14,10,14,4,27,8,10,11,11,25,25,10,15,15,10,25,25,11,11,12,9,8,24,29,14,12,14,29,24,8,9,12,13,13,24,9,31,31,13,13,31,31,9,24,13,13
%N A268715 Square array A(i,j) = A003188(A006068(i) + A006068(j)), read by antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...
%C A268715 Each row n is row A006068(n) of array A268820 without its A006068(n) initial terms.
%H A268715 Antti Karttunen, <a href="/A268715/b268715.txt">Table of n, a(n) for n = 0..15050; the first 173 antidiagonals of the array</a>
%F A268715 A(i,j) = A003188(A006068(i) + A006068(j)) = A003188(A268714(i,j)).
%F A268715 A(row,col) = A268820(A006068(row), (A006068(row)+col)).
%e A268715 The top left [0 .. 15] x [0 .. 15] section of the array:
%e A268715    0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15
%e A268715    1,  3,  6,  2, 12,  4,  7,  5, 24,  8, 11,  9, 13, 15, 10, 14
%e A268715    2,  6,  5,  7, 15, 13,  4, 12, 27, 25,  8, 24, 14, 10,  9, 11
%e A268715    3,  2,  7,  6, 13, 12,  5,  4, 25, 24,  9,  8, 15, 14, 11, 10
%e A268715    4, 12, 15, 13,  9, 11, 14, 10, 29, 31, 26, 30,  8, 24, 27, 25
%e A268715    5,  4, 13, 12, 11, 10, 15, 14, 31, 30, 27, 26,  9,  8, 25, 24
%e A268715    6,  7,  4,  5, 14, 15, 12, 13, 26, 27, 24, 25, 10, 11,  8,  9
%e A268715    7,  5, 12,  4, 10, 14, 13, 15, 30, 26, 25, 27, 11,  9, 24,  8
%e A268715    8, 24, 27, 25, 29, 31, 26, 30, 17, 19, 22, 18, 28, 20, 23, 21
%e A268715    9,  8, 25, 24, 31, 30, 27, 26, 19, 18, 23, 22, 29, 28, 21, 20
%e A268715   10, 11,  8,  9, 26, 27, 24, 25, 22, 23, 20, 21, 30, 31, 28, 29
%e A268715   11,  9, 24,  8, 30, 26, 25, 27, 18, 22, 21, 23, 31, 29, 20, 28
%e A268715   12, 13, 14, 15,  8,  9, 10, 11, 28, 29, 30, 31, 24, 25, 26, 27
%e A268715   13, 15, 10, 14, 24,  8, 11,  9, 20, 28, 31, 29, 25, 27, 30, 26
%e A268715   14, 10,  9, 11, 27, 25,  8, 24, 23, 21, 28, 20, 26, 30, 29, 31
%e A268715   15, 14, 11, 10, 25, 24,  9,  8, 21, 20, 29, 28, 27, 26, 31, 30
%t A268715 A003188[n_] := BitXor[n, Floor[n/2]]; A006068[n_] := BitXor @@ Table[Floor[ n/2^m], {m, 0, Log[2, n]}]; A006068[0]=0; A[i_, j_] := A003188[A006068[i] + A006068[j]]; Table[A[i-j, j], {i, 0, 13}, {j, 0, i}] // Flatten (* _Jean-François Alcover_, Feb 17 2016 *)
%o A268715 (Scheme)
%o A268715 (define (A268715 n) (A268715bi (A002262 n) (A025581 n)))
%o A268715 (define (A268715bi row col) (A003188 (+ (A006068 row) (A006068 col))))
%o A268715 ;; Alternatively, extracting data from array A268820:
%o A268715 (define (A268715bi row col) (A268820bi (A006068 row) (+ (A006068 row) col)))
%o A268715 (Python)
%o A268715 def a003188(n): return n^(n>>1)
%o A268715 def a006068(n):
%o A268715     s=1
%o A268715     while True:
%o A268715         ns=n>>s
%o A268715         if ns==0: break
%o A268715         n=n^ns
%o A268715         s<<=1
%o A268715     return n
%o A268715 def T(n, k): return a003188(a006068(n) + a006068(k))
%o A268715 for n in range(21): print([T(n - k, k) for k in range(n + 1)]) # _Indranil Ghosh_, Jun 07 2017
%Y A268715 Cf. A003188, A006068, A268714, A268820.
%Y A268715 Main diagonal: A001969.
%Y A268715 Row 0, column 0: A001477.
%Y A268715 Row 1, column 1: A268717.
%Y A268715 Antidiagonal sums: A268837.
%Y A268715 Cf. A268719 (the lower triangular section).
%Y A268715 Cf. also A268725.
%K A268715 nonn,tabl
%O A268715 0,4
%A A268715 _Antti Karttunen_, Feb 12 2016