This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268719 #23 Jun 24 2025 10:45:40 %S A268719 0,1,3,2,6,5,3,2,7,6,4,12,15,13,9,5,4,13,12,11,10,6,7,4,5,14,15,12,7, %T A268719 5,12,4,10,14,13,15,8,24,27,25,29,31,26,30,17,9,8,25,24,31,30,27,26, %U A268719 19,18,10,11,8,9,26,27,24,25,22,23,20,11,9,24,8,30,26,25,27,18,22,21,23,12,13,14,15,8,9,10,11,28,29,30,31,24 %N A268719 Triangular table T(n>=0,k=0..n) = A003188(A006068(n) + A006068(k)), read by rows as A(0,0), A(1,0), A(1,1), A(2,0), A(2,1), A(2,2), ... %H A268719 Antti Karttunen, <a href="/A268719/b268719.txt">Table of n, a(n) for n = 0..15050; rows 0 .. 172 of the triangular table</a> %F A268719 T(n,k) = A003188(A006068(n) + A006068(k)). %F A268719 a(n) = A268715(A003056(n), A002262(n)). [As a linear sequence.] %e A268719 The first fifteen rows of the triangle: %e A268719 0 %e A268719 1 3 %e A268719 2 6 5 %e A268719 3 2 7 6 %e A268719 4 12 15 13 9 %e A268719 5 4 13 12 11 10 %e A268719 6 7 4 5 14 15 12 %e A268719 7 5 12 4 10 14 13 15 %e A268719 8 24 27 25 29 31 26 30 17 %e A268719 9 8 25 24 31 30 27 26 19 18 %e A268719 10 11 8 9 26 27 24 25 22 23 20 %e A268719 11 9 24 8 30 26 25 27 18 22 21 23 %e A268719 12 13 14 15 8 9 10 11 28 29 30 31 24 %e A268719 13 15 10 14 24 8 11 9 20 28 31 29 25 27 %e A268719 14 10 9 11 27 25 8 24 23 21 28 20 26 30 29 %t A268719 a88[n_] := BitXor[n, Floor[n/2]]; %t A268719 a68[n_] := BitXor @@ Table[Floor[n/2^m], {m, 0, Floor[Log[2, n]]}]; %t A268719 a68[0] = 0; %t A268719 T[n_, k_] := a88[a68[n] + a68[k]]; %t A268719 Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 19 2019 *) %o A268719 (Scheme) (define (A268719 n) (A268715bi (A003056 n) (A002262 n))) %o A268719 (Python) %o A268719 def a003188(n): return n^(n>>1) %o A268719 def a006068(n): %o A268719 s=1 %o A268719 while True: %o A268719 ns=n>>s %o A268719 if ns==0: break %o A268719 n=n^ns %o A268719 s<<=1 %o A268719 return n %o A268719 def T(n, k): return a003188(a006068(n) + a006068(k)) %o A268719 for n in range(21): print([T(n, k) for k in range(n + 1)]) # _Indranil Ghosh_, Jun 07 2017 %Y A268719 Cf. A003188, A006068. %Y A268719 Cf. A002262, A003056, A268715. %Y A268719 Cf. A001477 (left edge), A001969 (right edge). %Y A268719 Cf. A268720 (row sums). %K A268719 nonn,tabl %O A268719 0,3 %A A268719 _Antti Karttunen_, Feb 13 2016