cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268740 T(n,k)=Number of nXk binary arrays with some 1 horizontally or vertically adjacent to some other 1 exactly once.

Original entry on oeis.org

0, 1, 1, 2, 4, 2, 5, 15, 15, 5, 10, 48, 80, 48, 10, 20, 145, 396, 396, 145, 20, 38, 420, 1788, 2876, 1788, 420, 38, 71, 1183, 7831, 19591, 19591, 7831, 1183, 71, 130, 3264, 33170, 128232, 200204, 128232, 33170, 3264, 130, 235, 8865, 137868, 816009, 1971414
Offset: 1

Views

Author

R. H. Hardin, Feb 12 2016

Keywords

Comments

Table starts
...0.....1.......2.........5..........10............20.............38
...1.....4......15........48.........145...........420...........1183
...2....15......80.......396........1788..........7831..........33170
...5....48.....396......2876.......19591........128232.........816009
..10...145....1788.....19591......200204.......1971414.......18847982
..20...420....7831....128232.....1971414......29134076......418632185
..38..1183...33170....816009....18847982.....418632185.....9039552112
..71..3264..137868...5087814...176668038....5894815754...191307160577
.130..8865..563486..31228804..1629738420...81718671716..3985770068310
.235.23780.2275119.189328186.14851460143.1119014223138.82030747371058

Examples

			Some solutions for n=4 k=4
..0..1..0..1. .0..0..0..1. .0..1..0..1. .0..0..1..0. .0..1..0..0
..1..0..0..0. .1..0..0..0. .0..0..0..1. .1..1..0..0. .1..0..0..1
..0..1..0..1. .0..1..1..0. .0..0..0..0. .0..0..1..0. .0..1..1..0
..0..0..0..1. .1..0..0..0. .1..0..1..0. .0..0..0..0. .1..0..0..0
		

Crossrefs

Column 1 is A001629.
Column 2 is A093967.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3) -a(n-4)
k=3: a(n) = 4*a(n-1) +8*a(n-2) -24*a(n-3) -38*a(n-4) +4*a(n-5) +12*a(n-6) -a(n-8)
k=4: [order 10]
k=5: [order 18]
k=6: [order 22]
k=7: [order 42]