A268740 T(n,k)=Number of nXk binary arrays with some 1 horizontally or vertically adjacent to some other 1 exactly once.
0, 1, 1, 2, 4, 2, 5, 15, 15, 5, 10, 48, 80, 48, 10, 20, 145, 396, 396, 145, 20, 38, 420, 1788, 2876, 1788, 420, 38, 71, 1183, 7831, 19591, 19591, 7831, 1183, 71, 130, 3264, 33170, 128232, 200204, 128232, 33170, 3264, 130, 235, 8865, 137868, 816009, 1971414
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..0..1. .0..0..0..1. .0..1..0..1. .0..0..1..0. .0..1..0..0 ..1..0..0..0. .1..0..0..0. .0..0..0..1. .1..1..0..0. .1..0..0..1 ..0..1..0..1. .0..1..1..0. .0..0..0..0. .0..0..1..0. .0..1..1..0 ..0..0..0..1. .1..0..0..0. .1..0..1..0. .0..0..0..0. .1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1404
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3) -a(n-4)
k=3: a(n) = 4*a(n-1) +8*a(n-2) -24*a(n-3) -38*a(n-4) +4*a(n-5) +12*a(n-6) -a(n-8)
k=4: [order 10]
k=5: [order 18]
k=6: [order 22]
k=7: [order 42]
Comments