A268744 Number of n X 2 binary arrays with some element plus some horizontally or vertically adjacent neighbor totalling two no more than once.
4, 11, 32, 89, 244, 659, 1760, 4657, 12228, 31899, 82752, 213641, 549236, 1406755, 3591232, 9140833, 23204612, 58765099, 148496608, 374496953, 942729588, 2369172915, 5944748064, 14895231121, 37272007108, 93149401019, 232527917312
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0. .1..0. .0..0. .0..0. .0..0. .0..0. .1..0. .0..1. .1..0. .0..1 ..1..0. .0..1. .1..0. .0..0. .1..1. .0..0. .1..0. .0..0. .0..0. .0..0 ..1..0. .0..0. .1..0. .0..0. .0..0. .1..0. .0..1. .0..1. .1..0. .0..1 ..0..0. .1..1. .0..1. .0..1. .1..0. .0..0. .0..0. .1..0. .1..0. .0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268750.
Formula
Empirical: a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) - a(n-4).
Empirical g.f.: x*(4 - 5*x - 4*x^2 - x^3) / (1 - 2*x - x^2)^2. - Colin Barker, Mar 21 2018
Comments