A268745 Number of n X 3 binary arrays with some element plus some horizontally or vertically adjacent neighbor totalling two no more than once.
7, 32, 143, 623, 2615, 10830, 44067, 177429, 707163, 2796840, 10986379, 42911627, 166777091, 645395334, 2488065863, 9559464281, 36618142447, 139888931680, 533099140807, 2027067051095, 7692165427919, 29135580083054, 110168752548843
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..1. .0..0..1. .0..0..0. .1..0..1. .0..0..0. .0..0..1. .0..1..0 ..1..0..0. .1..0..0. .0..0..1. .0..0..0. .0..1..0. .1..1..0. .0..0..0 ..0..0..0. .0..0..0. .1..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0 ..0..0..1. .1..1..0. .0..1..1. .0..1..0. .1..1..0. .0..0..1. .0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A268750.
Formula
Empirical: a(n) = 4*a(n-1) + 8*a(n-2) - 24*a(n-3) - 38*a(n-4) + 4*a(n-5) + 12*a(n-6) - a(n-8).
Empirical g.f.: x*(7 + 4*x - 41*x^2 - 37*x^3 + 13*x^4 + 6*x^5 + x^6 - x^7) / (1 - 2*x - 6*x^2 + x^4)^2. - Colin Barker, Jan 14 2019