A268746 Number of nX4 binary arrays with some element plus some horizontally or vertically adjacent neighbor totalling two no more than once.
13, 89, 623, 4110, 26334, 165019, 1016807, 6183665, 37209717, 221970102, 1314544140, 7737069617, 45297553803, 263980824665, 1532201345489, 8861529601362, 51088246525260, 293694819166095, 1684057081243885
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..1..0..1 ..0..0..0..1. .1..0..0..0. .1..0..0..1. .0..0..0..0. .1..0..1..0 ..1..0..0..0. .0..0..1..0. .0..1..0..0. .1..0..0..0. .0..0..0..0 ..1..0..0..1. .1..0..1..0. .1..0..1..0. .0..0..0..0. .0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268750.
Formula
Empirical: a(n) = 8*a(n-1) +2*a(n-2) -82*a(n-3) -49*a(n-4) +124*a(n-5) +39*a(n-6) -58*a(n-7) -6*a(n-8) +8*a(n-9) -a(n-10)
Comments