A268747 Number of nX5 binary arrays with some element plus some horizontally or vertically adjacent neighbor totalling two no more than once.
23, 244, 2615, 26334, 255651, 2425799, 22577073, 207252725, 1880654551, 16909709308, 150867667407, 1337324783132, 11788337576943, 103412756868981, 903363696442081, 7862056896605875, 68198486775427551, 589834799847933624
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..0..1. .1..0..0..0..0. .0..1..0..1..0. .0..0..0..1..0 ..1..0..0..1..0. .0..1..0..0..0. .0..0..0..0..1. .0..0..0..1..0 ..0..0..0..0..1. .0..0..0..0..1. .1..0..0..0..1. .0..0..0..0..1 ..1..0..1..1..0. .1..0..0..0..0. .0..0..0..0..0. .0..1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268750.
Formula
Empirical: a(n) = 8*a(n-1) +56*a(n-2) -288*a(n-3) -1506*a(n-4) +870*a(n-5) +7568*a(n-6) -1632*a(n-7) -15481*a(n-8) +4624*a(n-9) +13495*a(n-10) -6192*a(n-11) -4336*a(n-12) +2890*a(n-13) +82*a(n-14) -288*a(n-15) +24*a(n-16) +8*a(n-17) -a(n-18)
Comments