A268748 Number of nX6 binary arrays with some element plus some horizontally or vertically adjacent neighbor totalling two no more than once.
41, 659, 10830, 165019, 2425799, 34732937, 487682438, 6746117783, 92215499119, 1248437108837, 16766958502992, 223674635599161, 2966748789292217, 39154974765661223, 514529476985579624, 6735601878829825279
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1..1..0..0. .1..0..1..0..1..0. .0..0..0..1..0..1. .0..1..0..0..0..1 ..0..1..0..0..0..1. .0..0..0..1..0..0. .0..0..0..1..0..0. .0..0..1..0..1..0 ..0..0..1..0..1..0. .0..1..0..0..0..0. .1..0..0..0..0..0. .0..0..0..1..0..0 ..0..1..0..1..0..0. .0..1..0..0..0..1. .0..0..1..0..1..0. .1..0..1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268750.
Formula
Empirical: a(n) = 16*a(n-1) +60*a(n-2) -1148*a(n-3) -3346*a(n-4) +16272*a(n-5) +36588*a(n-6) -104246*a(n-7) -147989*a(n-8) +349140*a(n-9) +217324*a(n-10) -591448*a(n-11) -19320*a(n-12) +431032*a(n-13) -151921*a(n-14) -73194*a(n-15) +41684*a(n-16) +2552*a(n-17) -3594*a(n-18) +148*a(n-19) +100*a(n-20) -4*a(n-21) -a(n-22)
Comments