A268750 T(n,k)=Number of nXk binary arrays with some element plus some horizontally or vertically adjacent neighbor totalling two no more than once.
2, 4, 4, 7, 11, 7, 13, 32, 32, 13, 23, 89, 143, 89, 23, 41, 244, 623, 623, 244, 41, 72, 659, 2615, 4110, 2615, 659, 72, 126, 1760, 10830, 26334, 26334, 10830, 1760, 126, 219, 4657, 44067, 165019, 255651, 165019, 44067, 4657, 219, 379, 12228, 177429, 1016807
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..0..0..0. .0..0..0..0. .1..0..1..0. .0..1..0..0. .0..1..0..0 ..0..1..0..1. .0..0..0..0. .0..1..0..0. .0..0..1..0. .1..0..1..0 ..1..0..0..0. .1..0..0..0. .0..0..0..0. .0..1..0..0. .0..1..0..0 ..0..0..0..1. .0..1..1..0. .0..1..0..1. .1..0..0..0. .1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1404
Crossrefs
Column 1 is A208354(n+1).
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3) -a(n-4)
k=3: a(n) = 4*a(n-1) +8*a(n-2) -24*a(n-3) -38*a(n-4) +4*a(n-5) +12*a(n-6) -a(n-8)
k=4: [order 10]
k=5: [order 18]
k=6: [order 22]
k=7: [order 42]
Comments