A268754 The period of an n X 1 rectangular oscillator in the B1/S Life-like cellular automaton.
1, 2, 1, 6, 4, 14, 1, 14, 12, 62, 8, 126, 28, 30, 1, 30, 28, 1022, 24, 126, 124, 4094, 16, 2046, 252, 1022, 56, 32766, 60, 62, 1, 62, 60, 8190, 56, 174762, 2044, 8190, 48, 2046, 252, 254, 248, 8190, 8188, 16777214, 32, 4194302, 4092, 510, 504, 134217726, 2044, 2097150
Offset: 1
Keywords
Examples
a(10) = 62 because a strip of 10 cells has period 62 in this rule.
Links
- Adam P. Goucher, Table of n, a(n) for n = 1..200 (terms for n = 1..99 from E-Hern Lee)
- Lee Burnette, Variations of Life. [dead link]
- Lee Burnette, Oscillator for n=10. [dead link]
- Stack Exchange Network chat, Initial message.
- Stack Exchange Network chat, Electrons in a wire.
Crossrefs
Even-indexed terms are exactly A160657. [corrected by Adam P. Goucher, Jan 13 2019]
Programs
-
Mathematica
g = Function[{sq, p}, Module[{l = Length[sq]}, Do[If[sq[[i]] == sq[[j]], Return[p^(j - 1) - p^(i - 1)]], {j, 2, l}, {i, 1, j - 1}]]]; MPM = Algebra`MatrixPowerMod; EventualPeriod = Function[{m, v, p}, Module[{n = Length[m], w, sq, k, primes}, sq = NestList[(MPM[#, p, p]) &, m, n]; w = Mod[Last[sq].v, p]; sq = Map[(Mod[#.w, p]) &, sq]; k = g[sq, p]; If[k == Null, k = p^n Apply[LCM, Table[p^r - 1, {r, 1, n}]]]; primes = Map[First, FactorInteger[k]]; primes = Select[primes, (# > 1) &]; While[Length[primes] > 0, primes = Select[primes, (Mod[k, #] == 0) &]; primes = Select[primes, (Mod[MPM[m, k/#, p].w, p] == w) &]; k = k/Fold[Times, 1, primes]; ]; k ]]; mat = Function[{n}, Table[Boole[Abs[i - j] == 1], {i, 1, n}, {j, 1, n}]]; vec = Function[{n}, Table[Boole[i == 1], {i, 1, n}]]; Table[EventualPeriod[mat[n], vec[n], 2], {n, 1, 100}] (* Adam P. Goucher, Jan 13 2019 *)
-
Python
def electron_period(n): wire_mask = (1 << n) - 1 power = lam = 1 tortoise, hare = 1, 2 while tortoise != hare: if power == lam: tortoise = hare power *= 2 lam = 0 hare = ((hare << 1) ^ (hare >> 1)) & wire_mask lam += 1 return lam
Formula
No general formula for even-indexed terms is known. For odd-indexed terms, a(2n+1) = 2*a(n), except when n is of the form (2^k - 1), in which case a(n) = 1.
Comments