cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268759 Triangle T(n,k) read by rows: T(n,k) = (1/4)*(1 + k)*(2 + k)*(k - n)*(1 + k - n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 6, 9, 6, 0, 0, 10, 18, 18, 10, 0, 0, 15, 30, 36, 30, 15, 0, 0, 21, 45, 60, 60, 45, 21, 0, 0, 28, 63, 90, 100, 90, 63, 28, 0, 0, 36, 84, 126, 150, 150, 126, 84, 36, 0, 0, 45, 108, 168, 210, 225, 210, 168, 108, 45, 0, 0, 55, 135, 216, 280, 315
Offset: 0

Views

Author

Bradley Klee, Feb 20 2016

Keywords

Comments

Off-diagonal elements of angular momentum matrices J_1^2 and J_2^2.
Construct the infinite-dimensional matrix representation of angular momentum operators (J_1,J_2,J_3) in the block-diagonal, Jordan-Schwinger form (cf. Harter, Klee, Schwinger). The triangle terms T(n,k) satisfy:(1/2)T(n,k)^(1/2) = = = - = - . In the Dirac notation, we write elements m_{ij} of matrix M as =m_{ij}. Matrices for J_1^2 and J_2^2 are sparse. These equalities and the central-diagonal equalities of A141387 determine the only nonzero entries.
Notice that a(n) = T(n,k) is always a multiple of the triangular numbers, up to an offset. Conjecture: the triangle tabulating matrix elements is determined entirely by the coefficients: binomial(n,p) (cf. A094053). Various sequences along the diagonals of matrix J_1^p lead to other numbers with geometric interpretations (Cf. A000567, A100165).

Examples

			0;
0,  0;
1,  0,  0;
3,  3,  0,  0;
6,  9,  6,  0,  0;
10, 18, 18, 10, 0,  0;
15, 30, 36, 30, 15, 0, 0;
...
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[(1/4) (1 + k) (2 + k) (k - n) (1 + k - n), {n, 0, 10, 1}, {k, 0, n, 1}]]

Formula

T(n,k) = (1/4)*(1 + k)*(2 + k)*(k - n)*(1 + k - n).
G.f.: x^2/((1-x)^3(1-x*y)^3)