A268759 Triangle T(n,k) read by rows: T(n,k) = (1/4)*(1 + k)*(2 + k)*(k - n)*(1 + k - n).
0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 6, 9, 6, 0, 0, 10, 18, 18, 10, 0, 0, 15, 30, 36, 30, 15, 0, 0, 21, 45, 60, 60, 45, 21, 0, 0, 28, 63, 90, 100, 90, 63, 28, 0, 0, 36, 84, 126, 150, 150, 126, 84, 36, 0, 0, 45, 108, 168, 210, 225, 210, 168, 108, 45, 0, 0, 55, 135, 216, 280, 315
Offset: 0
Examples
0; 0, 0; 1, 0, 0; 3, 3, 0, 0; 6, 9, 6, 0, 0; 10, 18, 18, 10, 0, 0; 15, 30, 36, 30, 15, 0, 0; ...
Links
- W. Harter, Principles of Symmetry, Dynamics, Spectroscopy, Wiley, 1993, Ch. 5, page 345-346.
- B. Klee, Quantum Angular Momentum Matrices, Wolfram Demonstrations Project, 2016.
- J. Schwinger, On Angular Momentum , Cambridge: Harvard University, Nuclear Development Associates, Inc., 1952.
Programs
-
Mathematica
Flatten[Table[(1/4) (1 + k) (2 + k) (k - n) (1 + k - n), {n, 0, 10, 1}, {k, 0, n, 1}]]
Formula
T(n,k) = (1/4)*(1 + k)*(2 + k)*(k - n)*(1 + k - n).
G.f.: x^2/((1-x)^3(1-x*y)^3)
Comments