A268763 Number of nX5 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
10, 105, 762, 5170, 32056, 193573, 1129042, 6475898, 36505596, 203462597, 1122256900, 6140903312, 33367393732, 180252797855, 968778729426, 5183858768244, 27630592631158, 146768594783741, 777214421588348
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..1..0..0. .1..0..0..0..1. .1..0..0..0..0. .0..0..0..0..0 ..0..0..0..0..0. .0..0..1..0..1. .0..0..1..0..1. .0..0..0..0..0 ..1..0..0..0..0. .0..0..0..0..0. .0..1..0..0..0. .0..1..0..1..0 ..0..1..0..0..1. .1..0..0..0..1. .0..0..0..1..0. .1..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268766.
Formula
Empirical: a(n) = 4*a(n-1) +28*a(n-2) -62*a(n-3) -314*a(n-4) +78*a(n-5) +867*a(n-6) +6*a(n-7) -859*a(n-8) +46*a(n-9) +215*a(n-10) -8*a(n-11) -16*a(n-12)
Comments