cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A268760 Number of n X n binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 6, 56, 1148, 32056, 1552272, 127676872, 18045771274, 4495138018796, 1955829240647962, 1511334747222697904, 2064152526111916503300, 5022957354228609008158500, 21748481726801956896608976098
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Diagonal of A268766.

Examples

			Some solutions for n=4
..0..0..1..1. .0..0..0..0. .0..1..0..1. .0..0..0..1. .0..0..0..0
..1..0..0..0. .1..0..0..0. .0..0..0..0. .1..1..0..0. .1..0..0..1
..0..0..0..1. .0..0..0..1. .1..0..0..0. .0..0..0..1. .1..0..0..0
..1..0..0..0. .0..1..0..1. .1..0..1..0. .0..1..0..0. .0..0..0..1
		

Crossrefs

Cf. A268766.

A268761 Number of n X 3 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

2, 15, 56, 223, 762, 2607, 8500, 27411, 86622, 270955, 838224, 2573015, 7841538, 23759463, 71619436, 214933915, 642504870, 1914023267, 5684288136, 16834582623, 49732758858, 146587890015, 431177727396, 1265883329827, 3710027613934
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Examples

			Some solutions for n=4:
..1..0..1. .0..1..1. .1..0..0. .1..0..1. .0..1..0. .1..1..0. .0..0..0
..0..0..1. .0..0..0. .0..0..0. .0..0..0. .0..0..1. .0..0..0. .0..0..0
..0..0..0. .0..0..0. .1..0..1. .0..1..0. .0..0..0. .0..0..0. .1..0..1
..0..0..0. .0..0..0. .0..0..1. .0..0..1. .0..0..1. .0..1..0. .1..0..0
		

Crossrefs

Column 3 of A268766.

Formula

Empirical: a(n) = 4*a(n-1) + 2*a(n-2) - 16*a(n-3) - a(n-4) + 12*a(n-5) - 4*a(n-6).
Empirical g.f.: x*(2 + 7*x - 8*x^2 + x^3) / (1 - 2*x - 3*x^2 + 2*x^3)^2. - Colin Barker, Jan 14 2019

A268762 Number of n X 4 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

5, 44, 223, 1148, 5170, 23156, 99057, 418924, 1736105, 7122856, 28898144, 116346184, 465034573, 1848051516, 7306228767, 28758043956, 112751067666, 440538622908, 1715952146561, 6665380161836, 25826102521633, 99840968906384
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Examples

			Some solutions for n=4:
..1..0..0..0. .1..0..0..0. .1..0..1..0. .0..0..0..1. .0..0..1..0
..0..0..0..0. .0..0..1..1. .0..0..0..0. .1..0..0..0. .0..0..0..0
..1..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..1. .0..0..1..1
..1..0..0..1. .1..0..0..1. .0..0..1..0. .0..0..0..1. .1..0..0..0
		

Crossrefs

Column 4 of A268766.

Formula

Empirical: a(n) = 4*a(n-1) + 10*a(n-2) - 32*a(n-3) - 47*a(n-4) + 40*a(n-5) + 38*a(n-6) - 12*a(n-7) - 9*a(n-8).
Empirical g.f.: x*(5 + 24*x - 3*x^2 - 24*x^3 - 9*x^4) / (1 - 2*x - 7*x^2 + 2*x^3 + 3*x^4)^2. - Colin Barker, Jan 14 2019

A268763 Number of nX5 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

10, 105, 762, 5170, 32056, 193573, 1129042, 6475898, 36505596, 203462597, 1122256900, 6140903312, 33367393732, 180252797855, 968778729426, 5183858768244, 27630592631158, 146768594783741, 777214421588348
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Column 5 of A268766.

Examples

			Some solutions for n=4
..1..0..1..0..0. .1..0..0..0..1. .1..0..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..1..0..1. .0..0..1..0..1. .0..0..0..0..0
..1..0..0..0..0. .0..0..0..0..0. .0..1..0..0..0. .0..1..0..1..0
..0..1..0..0..1. .1..0..0..0..1. .0..0..0..1..0. .1..0..0..0..0
		

Crossrefs

Cf. A268766.

Formula

Empirical: a(n) = 4*a(n-1) +28*a(n-2) -62*a(n-3) -314*a(n-4) +78*a(n-5) +867*a(n-6) +6*a(n-7) -859*a(n-8) +46*a(n-9) +215*a(n-10) -8*a(n-11) -16*a(n-12)

A268764 Number of nX6 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

20, 258, 2607, 23156, 193573, 1552272, 12111209, 92571436, 696659613, 5178525870, 38112289517, 278191828634, 2016589831189, 14532118028260, 104191269908219, 743719988895596, 5288057396240333, 37470071363668612, 264689231027772351
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Column 6 of A268766.

Examples

			Some solutions for n=4
..0..0..0..0..0..1. .0..1..1..0..0..1. .0..0..0..0..0..0. .0..1..0..0..0..1
..0..0..1..1..0..0. .0..0..0..0..0..0. .0..0..0..0..1..1. .0..0..0..0..0..1
..0..0..0..0..0..0. .0..1..0..0..1..0. .1..0..0..0..0..0. .0..0..1..0..0..0
..0..1..0..0..0..1. .0..0..0..0..0..0. .0..0..1..0..0..0. .1..0..0..0..0..0
		

Crossrefs

Cf. A268766.

Formula

Empirical: a(n) = 6*a(n-1) +51*a(n-2) -214*a(n-3) -1074*a(n-4) +2018*a(n-5) +7713*a(n-6) -10572*a(n-7) -22926*a(n-8) +30116*a(n-9) +25283*a(n-10) -32400*a(n-11) -15148*a(n-12) +15184*a(n-13) +5660*a(n-14) -2688*a(n-15) -1024*a(n-16)

A268765 Number of nX7 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

38, 595, 8500, 99057, 1129042, 12111209, 127676872, 1312123185, 13311824510, 133228716170, 1321110678618, 12988699400546, 126844585914726, 1231361200765123, 11893679949360102, 114371480492930683
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Column 7 of A268766.

Examples

			Some solutions for n=4
..1..0..0..0..0..1..0. .0..0..0..0..0..1..1. .0..0..0..0..1..0..0
..0..0..0..1..0..0..1. .1..0..1..0..0..0..0. .1..0..1..0..0..1..0
..0..0..0..0..0..0..0. .0..0..0..0..0..0..0. .0..0..0..0..0..0..0
..0..0..1..0..1..0..0. .0..1..0..0..1..0..0. .0..0..1..0..0..0..1
		

Crossrefs

Cf. A268766.

Formula

Empirical: a(n) = 12*a(n-1) +64*a(n-2) -942*a(n-3) -1476*a(n-4) +26868*a(n-5) +2249*a(n-6) -376788*a(n-7) +333472*a(n-8) +2686292*a(n-9) -4376424*a(n-10) -8985248*a(n-11) +21881197*a(n-12) +12658940*a(n-13) -55768960*a(n-14) +923990*a(n-15) +80699088*a(n-16) -25850884*a(n-17) -69171189*a(n-18) +34934900*a(n-19) +34833816*a(n-20) -22502076*a(n-21) -9502460*a(n-22) +7752808*a(n-23) +1023260*a(n-24) -1356480*a(n-25) +55136*a(n-26) +94080*a(n-27) -14400*a(n-28)
Showing 1-6 of 6 results.