A268760
Number of n X n binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
Original entry on oeis.org
0, 6, 56, 1148, 32056, 1552272, 127676872, 18045771274, 4495138018796, 1955829240647962, 1511334747222697904, 2064152526111916503300, 5022957354228609008158500, 21748481726801956896608976098
Offset: 1
Some solutions for n=4
..0..0..1..1. .0..0..0..0. .0..1..0..1. .0..0..0..1. .0..0..0..0
..1..0..0..0. .1..0..0..0. .0..0..0..0. .1..1..0..0. .1..0..0..1
..0..0..0..1. .0..0..0..1. .1..0..0..0. .0..0..0..1. .1..0..0..0
..1..0..0..0. .0..1..0..1. .1..0..1..0. .0..1..0..0. .0..0..0..1
A268761
Number of n X 3 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
Original entry on oeis.org
2, 15, 56, 223, 762, 2607, 8500, 27411, 86622, 270955, 838224, 2573015, 7841538, 23759463, 71619436, 214933915, 642504870, 1914023267, 5684288136, 16834582623, 49732758858, 146587890015, 431177727396, 1265883329827, 3710027613934
Offset: 1
Some solutions for n=4:
..1..0..1. .0..1..1. .1..0..0. .1..0..1. .0..1..0. .1..1..0. .0..0..0
..0..0..1. .0..0..0. .0..0..0. .0..0..0. .0..0..1. .0..0..0. .0..0..0
..0..0..0. .0..0..0. .1..0..1. .0..1..0. .0..0..0. .0..0..0. .1..0..1
..0..0..0. .0..0..0. .0..0..1. .0..0..1. .0..0..1. .0..1..0. .1..0..0
A268762
Number of n X 4 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
Original entry on oeis.org
5, 44, 223, 1148, 5170, 23156, 99057, 418924, 1736105, 7122856, 28898144, 116346184, 465034573, 1848051516, 7306228767, 28758043956, 112751067666, 440538622908, 1715952146561, 6665380161836, 25826102521633, 99840968906384
Offset: 1
Some solutions for n=4:
..1..0..0..0. .1..0..0..0. .1..0..1..0. .0..0..0..1. .0..0..1..0
..0..0..0..0. .0..0..1..1. .0..0..0..0. .1..0..0..0. .0..0..0..0
..1..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..1. .0..0..1..1
..1..0..0..1. .1..0..0..1. .0..0..1..0. .0..0..0..1. .1..0..0..0
A268763
Number of nX5 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
Original entry on oeis.org
10, 105, 762, 5170, 32056, 193573, 1129042, 6475898, 36505596, 203462597, 1122256900, 6140903312, 33367393732, 180252797855, 968778729426, 5183858768244, 27630592631158, 146768594783741, 777214421588348
Offset: 1
Some solutions for n=4
..1..0..1..0..0. .1..0..0..0..1. .1..0..0..0..0. .0..0..0..0..0
..0..0..0..0..0. .0..0..1..0..1. .0..0..1..0..1. .0..0..0..0..0
..1..0..0..0..0. .0..0..0..0..0. .0..1..0..0..0. .0..1..0..1..0
..0..1..0..0..1. .1..0..0..0..1. .0..0..0..1..0. .1..0..0..0..0
A268764
Number of nX6 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
Original entry on oeis.org
20, 258, 2607, 23156, 193573, 1552272, 12111209, 92571436, 696659613, 5178525870, 38112289517, 278191828634, 2016589831189, 14532118028260, 104191269908219, 743719988895596, 5288057396240333, 37470071363668612, 264689231027772351
Offset: 1
Some solutions for n=4
..0..0..0..0..0..1. .0..1..1..0..0..1. .0..0..0..0..0..0. .0..1..0..0..0..1
..0..0..1..1..0..0. .0..0..0..0..0..0. .0..0..0..0..1..1. .0..0..0..0..0..1
..0..0..0..0..0..0. .0..1..0..0..1..0. .1..0..0..0..0..0. .0..0..1..0..0..0
..0..1..0..0..0..1. .0..0..0..0..0..0. .0..0..1..0..0..0. .1..0..0..0..0..0
A268765
Number of nX7 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
Original entry on oeis.org
38, 595, 8500, 99057, 1129042, 12111209, 127676872, 1312123185, 13311824510, 133228716170, 1321110678618, 12988699400546, 126844585914726, 1231361200765123, 11893679949360102, 114371480492930683
Offset: 1
Some solutions for n=4
..1..0..0..0..0..1..0. .0..0..0..0..0..1..1. .0..0..0..0..1..0..0
..0..0..0..1..0..0..1. .1..0..1..0..0..0..0. .1..0..1..0..0..1..0
..0..0..0..0..0..0..0. .0..0..0..0..0..0..0. .0..0..0..0..0..0..0
..0..0..1..0..1..0..0. .0..1..0..0..1..0..0. .0..0..1..0..0..0..1
Showing 1-6 of 6 results.
Comments