A268768 Number of n X 2 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
3, 12, 32, 100, 248, 620, 1456, 3380, 7656, 17148, 37920, 83140, 180824, 390796, 839824, 1796180, 3825352, 8116764, 17165568, 36195300, 76118840, 159694252, 334301552, 698429300, 1456510888, 3032326460, 6303262176, 13083742980
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..2. .0..1. .2..1. .0..1. .1..0. .2..1. .0..1. .1..1. .0..0. .2..1 ..2..2. .0..0. .2..2. .1..0. .0..1. .2..2. .0..0. .2..2. .0..0. .1..2 ..1..1. .1..0. .2..1. .0..0. .0..0. .1..2. .0..0. .2..2. .0..1. .2..2 ..0..0. .0..1. .1..2. .1..0. .0..1. .1..2. .1..1. .1..2. .1..0. .2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A268774.
Formula
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) - 4*a(n-4) for n>5.
Conjectures from Colin Barker, Jan 14 2019: (Start)
G.f.: x*(3 + 6*x - x^2 + 12*x^3 + 12*x^4) / ((1 + x)^2*(1 - 2*x)^2).
a(n) = (4/27)*(7*((-1)^n-2^n) + 3*((-1)^n + 2^(2+n))*n) for n>1.
(End)