A268769 Number of n X 3 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
12, 32, 112, 446, 1524, 5214, 17000, 54822, 173244, 541910, 1676448, 5146030, 15683076, 47518926, 143238872, 429867830, 1285009740, 3828046534, 11368576272, 33669165246, 99465517716, 293175780030, 862355454792, 2531766659654
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..0. .1..0..0. .0..0..0. .1..2..1. .1..1..0. .2..2..2. .1..2..1 ..0..0..0. .1..0..0. .1..1..0. .1..2..2. .0..0..0. .1..2..2. .1..2..2 ..1..0..1. .0..0..0. .0..0..0. .2..2..1. .0..0..0. .2..2..1. .2..2..2 ..0..0..1. .1..0..0. .1..0..0. .1..2..2. .1..0..1. .2..1..2. .1..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A268774.
Formula
Empirical: a(n) = 4*a(n-1) + 2*a(n-2) - 16*a(n-3) - a(n-4) + 12*a(n-5) - 4*a(n-6) for n>8.
Empirical g.f.: 2*x*(6 - 8*x - 20*x^2 + 63*x^3 + 20*x^4 - 47*x^5 + 4*x^6 + 4*x^7) / (1 - 2*x - 3*x^2 + 2*x^3)^2. - Colin Barker, Jan 15 2019