A268773 Number of nX7 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
576, 1456, 17000, 198114, 2258084, 24222418, 255353744, 2624246370, 26623649020, 266457432340, 2642221357236, 25977398801092, 253689171829452, 2462722401530246, 23787359898720204, 228742960985861366
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..0..0..0..0. .0..0..0..0..1..0..0. .0..0..1..0..0..0..1 ..0..1..0..0..0..1..0. .0..0..0..0..0..0..1. .0..0..0..0..0..1..0 ..0..0..1..0..0..0..0. .1..0..0..0..0..0..0. .0..0..0..0..0..0..0 ..0..0..0..0..1..0..0. .1..0..1..0..0..0..1. .0..0..1..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268774.
Formula
Empirical: a(n) = 12*a(n-1) +64*a(n-2) -942*a(n-3) -1476*a(n-4) +26868*a(n-5) +2249*a(n-6) -376788*a(n-7) +333472*a(n-8) +2686292*a(n-9) -4376424*a(n-10) -8985248*a(n-11) +21881197*a(n-12) +12658940*a(n-13) -55768960*a(n-14) +923990*a(n-15) +80699088*a(n-16) -25850884*a(n-17) -69171189*a(n-18) +34934900*a(n-19) +34833816*a(n-20) -22502076*a(n-21) -9502460*a(n-22) +7752808*a(n-23) +1023260*a(n-24) -1356480*a(n-25) +55136*a(n-26) +94080*a(n-27) -14400*a(n-28) for n>30
Comments