cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A268767 Number of n X n 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

0, 12, 112, 2296, 64112, 3104544, 255353744, 36091542548, 8990276037592, 3911658481295924, 3022669494445395808, 4128305052223833006600, 10045914708457218016317000, 43496963453603913793217952196
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Diagonal of A268774.

Examples

			Some solutions for n=4
..0..1..0..0. .1..2..2..2. .2..2..2..2. .0..1..0..0. .1..0..0..0
..0..0..1..0. .1..2..2..2. .2..2..2..2. .1..0..0..0. .0..0..1..0
..0..0..0..0. .2..2..2..2. .2..2..2..1. .0..0..0..0. .1..0..0..0
..0..1..0..0. .2..1..2..2. .2..2..2..1. .1..0..1..0. .1..0..0..1
		

Crossrefs

Cf. A268774.

A268768 Number of n X 2 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

3, 12, 32, 100, 248, 620, 1456, 3380, 7656, 17148, 37920, 83140, 180824, 390796, 839824, 1796180, 3825352, 8116764, 17165568, 36195300, 76118840, 159694252, 334301552, 698429300, 1456510888, 3032326460, 6303262176, 13083742980
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Examples

			Some solutions for n=4:
..1..2. .0..1. .2..1. .0..1. .1..0. .2..1. .0..1. .1..1. .0..0. .2..1
..2..2. .0..0. .2..2. .1..0. .0..1. .2..2. .0..0. .2..2. .0..0. .1..2
..1..1. .1..0. .2..1. .0..0. .0..0. .1..2. .0..0. .2..2. .0..1. .2..2
..0..0. .0..1. .1..2. .1..0. .0..1. .1..2. .1..1. .1..2. .1..0. .2..1
		

Crossrefs

Column 2 of A268774.

Formula

Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) - 4*a(n-4) for n>5.
Conjectures from Colin Barker, Jan 14 2019: (Start)
G.f.: x*(3 + 6*x - x^2 + 12*x^3 + 12*x^4) / ((1 + x)^2*(1 - 2*x)^2).
a(n) = (4/27)*(7*((-1)^n-2^n) + 3*((-1)^n + 2^(2+n))*n) for n>1.
(End)

A268769 Number of n X 3 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

12, 32, 112, 446, 1524, 5214, 17000, 54822, 173244, 541910, 1676448, 5146030, 15683076, 47518926, 143238872, 429867830, 1285009740, 3828046534, 11368576272, 33669165246, 99465517716, 293175780030, 862355454792, 2531766659654
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Examples

			Some solutions for n=4:
..1..0..0. .1..0..0. .0..0..0. .1..2..1. .1..1..0. .2..2..2. .1..2..1
..0..0..0. .1..0..0. .1..1..0. .1..2..2. .0..0..0. .1..2..2. .1..2..2
..1..0..1. .0..0..0. .0..0..0. .2..2..1. .0..0..0. .2..2..1. .2..2..2
..0..0..1. .1..0..0. .1..0..0. .1..2..2. .1..0..1. .2..1..2. .1..2..2
		

Crossrefs

Column 3 of A268774.

Formula

Empirical: a(n) = 4*a(n-1) + 2*a(n-2) - 16*a(n-3) - a(n-4) + 12*a(n-5) - 4*a(n-6) for n>8.
Empirical g.f.: 2*x*(6 - 8*x - 20*x^2 + 63*x^3 + 20*x^4 - 47*x^5 + 4*x^6 + 4*x^7) / (1 - 2*x - 3*x^2 + 2*x^3)^2. - Colin Barker, Jan 15 2019

A268770 Number of n X 4 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

36, 100, 446, 2296, 10340, 46312, 198114, 837848, 3472210, 14245712, 57796288, 232692368, 930069146, 3696103032, 14612457534, 57516087912, 225502135332, 881077245816, 3431904293122, 13330760323672, 51652205043266
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0. .0..0..0..0. .0..0..0..0. .2..1..2..2. .1..1..0..0
..1..0..0..1. .0..1..0..0. .0..0..1..0. .2..2..2..2. .0..0..0..0
..1..0..0..0. .0..0..0..1. .1..0..0..0. .2..2..2..2. .0..0..0..0
..0..0..0..0. .0..0..0..1. .0..1..0..0. .1..1..2..1. .0..0..0..0
		

Crossrefs

Column 4 of A268774.

Formula

Empirical: a(n) = 4*a(n-1) + 10*a(n-2) - 32*a(n-3) - 47*a(n-4) + 40*a(n-5) + 38*a(n-6) - 12*a(n-7) - 9*a(n-8) for n>10.
Empirical g.f.: 2*x*(18 - 22*x - 157*x^2 + 332*x^3 + 794*x^4 - 238*x^5 - 734*x^6 - 72*x^7 + 189*x^8 + 54*x^9) / (1 - 2*x - 7*x^2 + 2*x^3 + 3*x^4)^2. - Colin Barker, Jan 15 2019

A268771 Number of nX5 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

96, 248, 1524, 10340, 64112, 387146, 2258084, 12951796, 73011192, 406925194, 2244513800, 12281806624, 66734787464, 360505595710, 1937557458852, 10367717536488, 55261185262316, 293537189567482, 1554428843176696
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Column 5 of A268774.

Examples

			Some solutions for n=4
..1..2..1..2..2. .2..1..2..1..2. .0..0..1..1..0. .2..2..1..2..1
..2..2..2..2..2. .2..1..2..2..2. .0..0..0..0..0. .2..2..2..2..2
..1..2..2..2..1. .2..2..2..2..2. .0..1..0..1..0. .2..1..2..2..2
..2..2..2..2..1. .2..2..2..2..1. .0..0..0..0..0. .2..2..1..2..1
		

Crossrefs

Cf. A268774.

Formula

Empirical: a(n) = 4*a(n-1) +28*a(n-2) -62*a(n-3) -314*a(n-4) +78*a(n-5) +867*a(n-6) +6*a(n-7) -859*a(n-8) +46*a(n-9) +215*a(n-10) -8*a(n-11) -16*a(n-12) for n>14

A268772 Number of nX6 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

240, 620, 5214, 46312, 387146, 3104544, 24222418, 185142872, 1393319226, 10357051740, 76224579034, 556383657268, 4033179662378, 29064236056520, 208382539816438, 1487439977791192, 10576114792480666, 74940142727337224
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Column 6 of A268774.

Examples

			Some solutions for n=4
..1..0..0..1..1..0. .2..2..2..1..2..1. .0..0..0..1..0..0. .1..2..2..2..2..1
..0..0..0..0..0..0. .2..2..2..2..2..2. .1..1..0..0..0..0. .2..1..2..2..2..2
..0..0..0..0..0..1. .1..2..2..1..2..1. .0..0..0..0..0..0. .2..2..2..2..2..2
..0..0..1..0..0..0. .2..2..2..2..2..1. .1..0..0..1..0..0. .1..2..1..2..2..2
		

Crossrefs

Cf. A268774.

Formula

Empirical: a(n) = 6*a(n-1) +51*a(n-2) -214*a(n-3) -1074*a(n-4) +2018*a(n-5) +7713*a(n-6) -10572*a(n-7) -22926*a(n-8) +30116*a(n-9) +25283*a(n-10) -32400*a(n-11) -15148*a(n-12) +15184*a(n-13) +5660*a(n-14) -2688*a(n-15) -1024*a(n-16) for n>18

A268773 Number of nX7 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

576, 1456, 17000, 198114, 2258084, 24222418, 255353744, 2624246370, 26623649020, 266457432340, 2642221357236, 25977398801092, 253689171829452, 2462722401530246, 23787359898720204, 228742960985861366
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Comments

Column 7 of A268774.

Examples

			Some solutions for n=4
..0..0..0..0..0..0..0. .0..0..0..0..1..0..0. .0..0..1..0..0..0..1
..0..1..0..0..0..1..0. .0..0..0..0..0..0..1. .0..0..0..0..0..1..0
..0..0..1..0..0..0..0. .1..0..0..0..0..0..0. .0..0..0..0..0..0..0
..0..0..0..0..1..0..0. .1..0..1..0..0..0..1. .0..0..1..0..0..0..1
		

Crossrefs

Cf. A268774.

Formula

Empirical: a(n) = 12*a(n-1) +64*a(n-2) -942*a(n-3) -1476*a(n-4) +26868*a(n-5) +2249*a(n-6) -376788*a(n-7) +333472*a(n-8) +2686292*a(n-9) -4376424*a(n-10) -8985248*a(n-11) +21881197*a(n-12) +12658940*a(n-13) -55768960*a(n-14) +923990*a(n-15) +80699088*a(n-16) -25850884*a(n-17) -69171189*a(n-18) +34934900*a(n-19) +34833816*a(n-20) -22502076*a(n-21) -9502460*a(n-22) +7752808*a(n-23) +1023260*a(n-24) -1356480*a(n-25) +55136*a(n-26) +94080*a(n-27) -14400*a(n-28) for n>30
Showing 1-7 of 7 results.