A268775 Number of n X 2 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two no more than once.
4, 11, 26, 65, 148, 343, 766, 1709, 3752, 8195, 17746, 38233, 81916, 174767, 371366, 786437, 1660240, 3495259, 7340026, 15379121, 32156324, 67108871, 139810126, 290805085, 603979768, 1252698803, 2594876066, 5368709129, 11095332172
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0. .0..0. .0..1. .0..1. .1..0. .0..0. .0..0. .1..0. .1..1. .0..0 ..0..0. .1..1. .1..0. .0..0. .0..0. .1..1. .0..0. .0..0. .0..0. .0..1 ..0..1. .0..0. .0..0. .1..1. .0..0. .0..0. .1..0. .0..1. .0..1. .0..0 ..1..0. .1..0. .1..0. .0..0. .1..0. .0..1. .1..0. .1..0. .0..0. .1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A268781.
Formula
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) - 4*a(n-4).
Conjectures from Colin Barker, Jan 15 2019: (Start)
G.f.: x*(4 + 3*x - 8*x^2 - 4*x^3) / ((1 + x)^2*(1 - 2*x)^2).
a(n) = ((-1)^(1+n) + 2^(2+n) + ((-1)^n+2^(1+n))*n) / 3.
(End)