A268776 Number of n X 3 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two no more than once.
7, 26, 91, 316, 1031, 3354, 10615, 33344, 103339, 317958, 970515, 2945172, 8888719, 26705714, 79909167, 238257768, 708129267, 2098664158, 6203795403, 18296271036, 53845375703, 158159174410, 463734769895, 1357486034320, 3967761581627
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..1..0 ..0..1..0. .0..1..1. .1..0..0. .0..0..0. .0..0..1. .0..1..0. .0..1..0 ..0..0..0. .0..0..0. .0..0..1. .0..0..1. .1..0..0. .0..0..0. .0..0..0 ..0..1..0. .0..1..0. .0..1..0. .1..0..0. .1..0..0. .0..0..1. .1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A268781.
Formula
Empirical: a(n) = 4*a(n-1) + 2*a(n-2) - 16*a(n-3) - a(n-4) + 12*a(n-5) - 4*a(n-6).
Empirical g.f.: x*(7 - 2*x - 27*x^2 + 12*x^3 + 8*x^4 - 4*x^5) / (1 - 2*x - 3*x^2 + 2*x^3)^2. - Colin Barker, Jan 15 2019