A268779 Number of nX6 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two no more than once.
41, 343, 3354, 27531, 224960, 1755113, 13493468, 101738555, 758303322, 5590121407, 40870469356, 296640792103, 2140108184248, 15358691305417, 109723986174308, 780748875032869, 5535897115345958, 39128843941494495
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..0..0..0. .0..0..0..1..1..0. .0..0..0..0..0..0. .0..0..0..0..0..0 ..0..0..1..0..0..1. .1..0..0..0..0..0. .0..1..0..1..0..1. .0..0..0..1..0..0 ..1..0..0..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..0. .0..0..0..0..0..1 ..0..0..1..0..1..0. .1..0..0..0..1..0. .1..0..0..0..1..0. .1..0..1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268781.
Formula
Empirical: a(n) = 6*a(n-1) +51*a(n-2) -214*a(n-3) -1074*a(n-4) +2018*a(n-5) +7713*a(n-6) -10572*a(n-7) -22926*a(n-8) +30116*a(n-9) +25283*a(n-10) -32400*a(n-11) -15148*a(n-12) +15184*a(n-13) +5660*a(n-14) -2688*a(n-15) -1024*a(n-16)
Comments