A268780 Number of n X 7 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two no more than once.
72, 766, 10615, 115391, 1288693, 13493468, 140404442, 1425678976, 14341399141, 142487073304, 1404716302427, 13742060955231, 133640514636584, 1292631496259982, 12446235637750465, 119353876258739189
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..0..1..0..0. .0..1..0..0..0..0..0. .1..0..1..0..0..1..0 ..0..0..0..0..0..0..0. .0..0..0..1..0..1..0. .0..0..0..0..0..0..1 ..0..0..0..0..1..0..0. .0..0..0..0..0..0..0. .1..0..0..0..0..0..0 ..0..0..0..1..0..0..0. .1..0..0..0..0..0..1. .0..0..0..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268781.
Formula
Empirical: a(n) = 12*a(n-1) +64*a(n-2) -942*a(n-3) -1476*a(n-4) +26868*a(n-5) +2249*a(n-6) -376788*a(n-7) +333472*a(n-8) +2686292*a(n-9) -4376424*a(n-10) -8985248*a(n-11) +21881197*a(n-12) +12658940*a(n-13) -55768960*a(n-14) +923990*a(n-15) +80699088*a(n-16) -25850884*a(n-17) -69171189*a(n-18) +34934900*a(n-19) +34833816*a(n-20) -22502076*a(n-21) -9502460*a(n-22) +7752808*a(n-23) +1023260*a(n-24) -1356480*a(n-25) +55136*a(n-26) +94080*a(n-27) -14400*a(n-28).
Comments