A268783 Number of n X 2 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two exactly once.
1, 5, 17, 48, 131, 338, 850, 2091, 5061, 12095, 28608, 67095, 156244, 361652, 832757, 1908885, 4358285, 9915728, 22489147, 50862918, 114743814, 258261695, 580072917, 1300393467, 2910078592, 6501783407, 14504787560, 32313853992, 71896385513
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0. .1..1. .0..0. .0..0. .0..0. .1..1. .0..0. .1..0. .0..0. .0..0 ..0..0. .0..0. .1..0. .1..1. .0..0. .0..0. .1..1. .1..0. .1..0. .0..1 ..0..1. .0..0. .1..0. .0..0. .1..1. .1..0. .0..0. .0..0. .0..1. .0..1 ..1..0. .0..1. .0..1. .1..0. .0..0. .0..1. .0..0. .0..1. .1..0. .0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A268789.
Formula
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 2*a(n-3) - 6*a(n-4) - 4*a(n-5) - a(n-6).
Empirical g.f.: x*(1 + 3*x + 4*x^2 + x^3) / (1 - x - 2*x^2 - x^3)^2. - Colin Barker, Jan 15 2019