cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268784 Number of n X 3 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two exactly once.

Original entry on oeis.org

2, 17, 72, 302, 1144, 4207, 14984, 52335, 179854, 610504, 2051436, 6836258, 22622554, 74418562, 243553160, 793537401, 2575357784, 8329124488, 26854438804, 86342760711, 276915214344, 886094782671, 2829527431748, 9018299661270
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2016

Keywords

Examples

			Some solutions for n=4:
..1..0..1. .1..1..0. .1..0..0. .0..1..0. .1..0..0. .0..0..1. .1..0..1
..0..1..0. .0..0..1. .0..0..1. .0..0..0. .1..0..1. .1..0..1. .0..1..0
..0..0..0. .0..0..0. .1..0..0. .1..0..0. .0..0..0. .0..0..0. .0..0..1
..1..0..0. .0..0..0. .1..0..0. .1..0..1. .0..1..0. .1..0..0. .0..0..0
		

Crossrefs

Column 3 of A268789.

Formula

Empirical: a(n) = 2*a(n-1) + 9*a(n-2) - 2*a(n-3) - 33*a(n-4) - 42*a(n-5) - 14*a(n-6) + 10*a(n-7) + 8*a(n-8) - a(n-10).
Empirical g.f.: x*(2 + 13*x + 20*x^2 + 9*x^3 - 8*x^4 - 10*x^5 - 4*x^6) / ((1 + x)^2*(1 - 2*x - 3*x^2 - x^3 + x^4)^2). - Colin Barker, Jan 15 2019