A268785 Number of nX4 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two exactly once.
5, 48, 302, 1714, 9085, 46195, 228384, 1105510, 5267662, 24786180, 115455033, 533317129, 2446323573, 11154503019, 50600348892, 228514035985, 1027932765869, 4607917805325, 20591918472965, 91765529043193, 407916504889146
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1..0. .0..0..0..1. .1..0..0..1. .1..0..0..0. .0..1..0..0 ..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..1..0..1. .0..0..0..1 ..1..0..0..0. .0..0..0..1. .1..0..0..1. .1..0..0..0. .0..1..0..0 ..1..0..0..0. .1..1..0..0. .0..0..0..1. .0..1..0..0. .1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268789.
Formula
Empirical: a(n) = 2*a(n-1) +19*a(n-2) +10*a(n-3) -122*a(n-4) -320*a(n-5) -295*a(n-6) +8*a(n-7) +176*a(n-8) +20*a(n-9) -98*a(n-10) -6*a(n-11) +43*a(n-12) -6*a(n-13) -11*a(n-14) +6*a(n-15) -a(n-16)
Comments