cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268787 Number of nX6 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two exactly once.

This page as a plain text file.
%I A268787 #4 Feb 13 2016 12:24:50
%S A268787 20,338,4207,46195,477128,4725018,45515227,429442918,3988796543,
%T A268787 36591758790,332327545513,2993282062865,26773510121640,
%U A268787 238060527618025,2105957538309226,18547209960131466,162707970808249851
%N A268787 Number of nX6 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two exactly once.
%C A268787 Column 6 of A268789.
%H A268787 R. H. Hardin, <a href="/A268787/b268787.txt">Table of n, a(n) for n = 1..210</a>
%F A268787 Empirical: a(n) = 2*a(n-1) +83*a(n-2) +210*a(n-3) -1918*a(n-4) -13444*a(n-5) -27431*a(n-6) +22868*a(n-7) +172414*a(n-8) +91292*a(n-9) -572846*a(n-10) -576908*a(n-11) +1569339*a(n-12) +1662464*a(n-13) -4129647*a(n-14) -2739590*a(n-15) +10005684*a(n-16) +128072*a(n-17) -18820309*a(n-18) +14239344*a(n-19) +18275195*a(n-20) -39512592*a(n-21) +16595129*a(n-22) +32600294*a(n-23) -63035320*a(n-24) +55225574*a(n-25) -27556538*a(n-26) +5959238*a(n-27) +1367780*a(n-28) -935764*a(n-29) -205936*a(n-30) +253428*a(n-31) -6946*a(n-32) -44268*a(n-33) +5192*a(n-34) +6896*a(n-35) -1085*a(n-36) -848*a(n-37) +74*a(n-38) +94*a(n-39) +3*a(n-40) -6*a(n-41) -a(n-42)
%e A268787 Some solutions for n=4
%e A268787 ..0..0..0..0..1..0. .0..0..1..0..0..0. .0..1..0..0..0..0. .0..1..0..1..0..1
%e A268787 ..1..0..0..1..0..0. .0..0..0..1..0..0. .0..0..1..0..1..0. .0..0..1..0..0..0
%e A268787 ..0..1..0..0..0..1. .0..0..0..0..1..1. .0..0..0..1..0..0. .0..0..0..0..1..0
%e A268787 ..0..0..1..0..0..0. .0..0..0..0..0..0. .0..0..0..0..1..0. .1..0..0..0..0..1
%Y A268787 Cf. A268789.
%K A268787 nonn
%O A268787 1,1
%A A268787 _R. H. Hardin_, Feb 13 2016