cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268796 Number of nX6 0..2 arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two exactly once.

This page as a plain text file.
%I A268796 #4 Feb 13 2016 13:43:58
%S A268796 240,1714,11948,117062,1158904,11138352,104971262,974000420,
%T A268796 8927994302,81031120788,729449219322,6521558348746,57964319359808,
%U A268796 512593621373638,4513059897036336,39580897460175788,345946165584055346
%N A268796 Number of nX6 0..2 arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two exactly once.
%C A268796 Column 6 of A268798.
%H A268796 R. H. Hardin, <a href="/A268796/b268796.txt">Table of n, a(n) for n = 1..210</a>
%F A268796 Empirical: a(n) = 2*a(n-1) +83*a(n-2) +210*a(n-3) -1918*a(n-4) -13444*a(n-5) -27431*a(n-6) +22868*a(n-7) +172414*a(n-8) +91292*a(n-9) -572846*a(n-10) -576908*a(n-11) +1569339*a(n-12) +1662464*a(n-13) -4129647*a(n-14) -2739590*a(n-15) +10005684*a(n-16) +128072*a(n-17) -18820309*a(n-18) +14239344*a(n-19) +18275195*a(n-20) -39512592*a(n-21) +16595129*a(n-22) +32600294*a(n-23) -63035320*a(n-24) +55225574*a(n-25) -27556538*a(n-26) +5959238*a(n-27) +1367780*a(n-28) -935764*a(n-29) -205936*a(n-30) +253428*a(n-31) -6946*a(n-32) -44268*a(n-33) +5192*a(n-34) +6896*a(n-35) -1085*a(n-36) -848*a(n-37) +74*a(n-38) +94*a(n-39) +3*a(n-40) -6*a(n-41) -a(n-42) for n>45
%e A268796 Some solutions for n=4
%e A268796 ..0..0..0..0..0..1. .2..1..1..2..2..2. .1..0..0..0..0..0. .0..1..0..1..0..0
%e A268796 ..0..0..0..1..0..1. .2..2..2..2..2..2. .0..0..0..0..0..0. .0..0..0..0..1..0
%e A268796 ..1..0..0..0..0..0. .2..2..2..2..2..2. .1..0..0..0..0..0. .0..0..1..0..0..0
%e A268796 ..0..0..1..0..0..1. .2..2..2..2..2..1. .0..0..1..1..0..1. .1..0..1..0..1..0
%Y A268796 Cf. A268798.
%K A268796 nonn
%O A268796 1,1
%A A268796 _R. H. Hardin_, Feb 13 2016