A268805 Number of nX4 0..2 arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two not more than once.
60, 290, 1202, 5848, 28452, 135912, 640926, 2990786, 13835892, 63544542, 290056316, 1317009868, 5952527788, 26795651036, 120193389832, 537427198324, 2396207992178, 10656560102448, 47282655935580, 209348341875062
Offset: 1
Keywords
Examples
Some solutions for n=4 ..2..2..2..2. .2..2..2..1. .1..2..1..2. .2..2..1..2. .0..2..2..2 ..2..1..2..1. .1..2..1..2. .1..2..2..2. .1..2..1..2. .1..2..1..2 ..1..2..2..2. .2..2..2..2. .2..2..2..1. .2..2..2..2. .2..2..2..2 ..2..2..1..2. .1..2..2..1. .1..2..2..2. .1..2..1..2. .1..2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A268809.
Formula
Empirical: a(n) = 2*a(n-1) +19*a(n-2) +10*a(n-3) -122*a(n-4) -320*a(n-5) -295*a(n-6) +8*a(n-7) +176*a(n-8) +20*a(n-9) -98*a(n-10) -6*a(n-11) +43*a(n-12) -6*a(n-13) -11*a(n-14) +6*a(n-15) -a(n-16) for n>19
Comments