This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268823 #22 Mar 11 2024 18:05:25 %S A268823 0,1,3,2,6,5,7,15,13,4,12,27,25,8,24,14,10,9,11,51,49,16,48,22,18,17, %T A268823 19,26,30,29,31,23,21,28,20,99,97,32,96,38,34,33,35,42,46,45,47,39,37, %U A268823 44,36,50,54,53,55,63,61,52,60,43,41,56,40,62,58,57,59,195,193,64,192,70,66,65,67,74,78,77,79,71,69,76,68,82,86,85 %N A268823 Permutation of nonnegative integers: a(0) = 0, a(n) = A268717(1 + A268821(n-1)). %C A268823 The "third shifted power" of permutation A268717. %H A268823 Antti Karttunen, <a href="/A268823/b268823.txt">Table of n, a(n) for n = 0..8191</a> %H A268823 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A268823 a(0), for n >= 1, a(n) = A268717(1 + A268821(n-1)). %F A268823 a(0) = 0, a(1) = 1, and for n > 1, a(n) = A268717(1 + A268717(1 + A268717(n-2))). %F A268823 For n >= 3, a(n) = A003188(3+A006068(n-3)). - _Antti Karttunen_, Mar 11 2024 %o A268823 (Scheme) (define (A268823 n) (if (<= n 1) n (A268717 (+ 1 (A268717 (+ 1 (A268717 (- n 2)))))))) %o A268823 (PARI) A003188(n) = bitxor(n, floor(n/2)); %o A268823 A006068(n) = if(n<2, n, {my(m = A006068(floor(n/2))); 2*m + (n%2 + m%2)%2}); %o A268823 A268717(n) = if(n<1, 0, A003188(1 + A006068(n - 1))); %o A268823 for(n=0, 100, print1(if(n<2, n, A268717(1 + A268717(1 + A268717(n - 2)))),", ")) \\ _Indranil Ghosh_, Mar 31 2017 %o A268823 (Python) %o A268823 def A003188(n): return n^(n//2) %o A268823 def A006068(n): %o A268823 if n<2: return n %o A268823 else: %o A268823 m=A006068(n//2) %o A268823 return 2*m + (n%2 + m%2)%2 %o A268823 def A268717(n): return 0 if n<1 else A003188(1 + A006068(n - 1)) %o A268823 def a(n): return A268717(1 + A268717(1 + A268717(n - 2))) if n>1 else n %o A268823 print([a(n) for n in range(101)]) # _Indranil Ghosh_, Mar 31 2017 %Y A268823 Inverse: A268824. %Y A268823 Cf. A003188, A006068, A268717, A268821, A268825, A268676. %Y A268823 Row 3 of array A268820. %K A268823 nonn %O A268823 0,3 %A A268823 _Antti Karttunen_, Feb 14 2016